What I Wish I Knew When Learning Haskell

Stephen Diehl
Contents

Basics
- Cabal ... 11
- Stack .. 16
- Flags .. 17
- Hackage 18
- GHCi ... 19
- Editor Integration 22
- Bottoms .. 22
- Exhaustiveness 24
- Debugger 25
- Stacktraces 25
- Trace .. 26
- Type Holes 27
- Deferred Type Errors 28
- ghcid .. 28
- Haddock .. 29

Monads
- Eightfold Path to Monad Satori 30
- Monadic Myths 31
- Laws .. 31
- Do Notation 32
- Maybe .. 33
- List ... 34
- IO ... 35
- Whats the point? 35
- Reader Monad 36
- Writer Monad 37
- State Monad 38
- Monad Tutorials 39

Monad Transformers
- mtl / transformers 41
- Transformers 42
- Basics .. 43
- ReaderT ... 44
- Newtype Deriving 45
- Efficiency 47
- Monad Morphisms 48

Language Extensions
- The Benign 49
- The Dangerous 50
- Type Inference 50
What Should be in Base .. 75
Custom Preludes .. 75
Partial Functions .. 76
Safe .. 76
Boolean Blindness .. 77
Foldable / Traversable ... 78
Corecursion ... 81
split .. 82
monad-loops .. 82

Strings ... 83
String ... 83
Import Conventions .. 84
Text ... 85
Text.Builder ... 85
ByteString .. 86
Printf ... 86
Overloaded Lists .. 87
String Conversions ... 87

Applicatives ... 88
Alternative ... 90
Arrows ... 91
Bifunctors .. 92
Polyvariadic Functions ... 93

Error Handling ... 94
Control.Exception .. 94
Exceptions .. 95
ExceptT ... 96
spoon ... 97

Advanced Monads ... 98
Function Monad .. 98
RWS Monad ... 99
Cont ... 100
MonadPlus ... 101
MonadFix .. 103
ST Monad .. 104
Free Monads ... 105
Indexed Monads .. 108
lifted-base ... 110

Quantification ... 111
Universal Quantification .. 111
Free theorems ... 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Systems</td>
<td>112</td>
</tr>
<tr>
<td>Rank-N Types</td>
<td>113</td>
</tr>
<tr>
<td>Existential Quantification</td>
<td>115</td>
</tr>
<tr>
<td>Impredicative Types</td>
<td>117</td>
</tr>
<tr>
<td>Scoped Type Variables</td>
<td>118</td>
</tr>
<tr>
<td>GADTs</td>
<td>119</td>
</tr>
<tr>
<td>GADTs</td>
<td>119</td>
</tr>
<tr>
<td>Kind Signatures</td>
<td>121</td>
</tr>
<tr>
<td>Void</td>
<td>122</td>
</tr>
<tr>
<td>Phantom Types</td>
<td>122</td>
</tr>
<tr>
<td>Typelevel Operations</td>
<td>124</td>
</tr>
<tr>
<td>Interpreters</td>
<td>125</td>
</tr>
<tr>
<td>HOAS</td>
<td>126</td>
</tr>
<tr>
<td>PHOAS</td>
<td>127</td>
</tr>
<tr>
<td>Final Interpreters</td>
<td>128</td>
</tr>
<tr>
<td>Finally Tagless</td>
<td>129</td>
</tr>
<tr>
<td>Datatypes</td>
<td>130</td>
</tr>
<tr>
<td>F-Algebras</td>
<td>131</td>
</tr>
<tr>
<td>recursion-schemes</td>
<td>136</td>
</tr>
<tr>
<td>Hint and Mueval</td>
<td>138</td>
</tr>
<tr>
<td>Testing</td>
<td>139</td>
</tr>
<tr>
<td>QuickCheck</td>
<td>139</td>
</tr>
<tr>
<td>SmallCheck</td>
<td>140</td>
</tr>
<tr>
<td>QuickSpec</td>
<td>142</td>
</tr>
<tr>
<td>Criterion</td>
<td>145</td>
</tr>
<tr>
<td>Tasty</td>
<td>148</td>
</tr>
<tr>
<td>silently</td>
<td>149</td>
</tr>
<tr>
<td>Type Families</td>
<td>149</td>
</tr>
<tr>
<td>MultiParam Typeclasses</td>
<td>149</td>
</tr>
<tr>
<td>Type Families</td>
<td>153</td>
</tr>
<tr>
<td>Injectivity</td>
<td>155</td>
</tr>
<tr>
<td>Roles</td>
<td>155</td>
</tr>
<tr>
<td>Monotraversable</td>
<td>157</td>
</tr>
<tr>
<td>NonEmpty</td>
<td>158</td>
</tr>
<tr>
<td>Overloaded Lists</td>
<td>159</td>
</tr>
<tr>
<td>Manual Proofs</td>
<td>159</td>
</tr>
<tr>
<td>Constraint Kinds</td>
<td>161</td>
</tr>
<tr>
<td>TypeFamilyDependencies</td>
<td>163</td>
</tr>
<tr>
<td>Promotion</td>
<td>163</td>
</tr>
<tr>
<td>Higher Kinded Types</td>
<td>163</td>
</tr>
<tr>
<td>Kind Polymorphism</td>
<td>164</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>DList</td>
<td>228</td>
</tr>
<tr>
<td>Sequence</td>
<td>228</td>
</tr>
<tr>
<td>FFI</td>
<td></td>
</tr>
<tr>
<td>Pure Functions</td>
<td>228</td>
</tr>
<tr>
<td>Storable Arrays</td>
<td>229</td>
</tr>
<tr>
<td>Function Pointers</td>
<td>231</td>
</tr>
<tr>
<td>Concurrency</td>
<td></td>
</tr>
<tr>
<td>Sparks</td>
<td>232</td>
</tr>
<tr>
<td>Threadscope</td>
<td>233</td>
</tr>
<tr>
<td>Strategies</td>
<td>235</td>
</tr>
<tr>
<td>STM</td>
<td>237</td>
</tr>
<tr>
<td>Monad Par</td>
<td>238</td>
</tr>
<tr>
<td>async</td>
<td>240</td>
</tr>
<tr>
<td>Graphics</td>
<td></td>
</tr>
<tr>
<td>Diagrams</td>
<td>242</td>
</tr>
<tr>
<td>Parsing</td>
<td></td>
</tr>
<tr>
<td>Parsec</td>
<td>243</td>
</tr>
<tr>
<td>Custom Lexer</td>
<td>245</td>
</tr>
<tr>
<td>Simple Parsing</td>
<td>247</td>
</tr>
<tr>
<td>Generic Parsing</td>
<td>249</td>
</tr>
<tr>
<td>Attoparsec</td>
<td>251</td>
</tr>
<tr>
<td>Optparse Applicative</td>
<td>254</td>
</tr>
<tr>
<td>Happy & Alex</td>
<td>256</td>
</tr>
<tr>
<td>Configurator</td>
<td>259</td>
</tr>
<tr>
<td>Streaming</td>
<td></td>
</tr>
<tr>
<td>Lazy IO</td>
<td>260</td>
</tr>
<tr>
<td>Pipes</td>
<td>261</td>
</tr>
<tr>
<td>Safe Pipes</td>
<td>263</td>
</tr>
<tr>
<td>Conduits</td>
<td>264</td>
</tr>
<tr>
<td>Data Formats</td>
<td></td>
</tr>
<tr>
<td>JSON</td>
<td>265</td>
</tr>
<tr>
<td>Yaml</td>
<td>272</td>
</tr>
<tr>
<td>CSV</td>
<td>274</td>
</tr>
<tr>
<td>Network & Web Programming</td>
<td></td>
</tr>
<tr>
<td>HTTP</td>
<td>276</td>
</tr>
<tr>
<td>Blaze</td>
<td>277</td>
</tr>
<tr>
<td>Warp</td>
<td>278</td>
</tr>
<tr>
<td>Scotty</td>
<td>278</td>
</tr>
<tr>
<td>Hastache</td>
<td>279</td>
</tr>
</tbody>
</table>
Databases
- Postgres ... 281
- Redis ... 285
- Acid State .. 286

GHC
- Block Diagram ... 288
- Core .. 290
- Inliner .. 294
- Dictionaries .. 295
- Specialization ... 297
- Static Compilation 298
- Unboxed Types ... 299
- IO/ST .. 303
- ghc-heap-view .. 304
- STG ... 306
- Worker/Wrapper .. 308
- Z-Encoding ... 309
- Cmm .. 310
- Optimization Hacks 317
- Interface Files .. 318

Profiling
- EKG ... 319
- RTS Profiling .. 320

Languages
- unbound ... 322
- unbound-generics 324
- llvm-general .. 327
- pretty .. 328
- wl-pprint-text ... 331
- Haskeline ... 331
- Repline .. 331

Template Haskell
- Perils of Metaprogramming 333
- Quasiquote ... 334
- language-c-quote 337
- Template Haskell 339
- Antiquotation .. 344
- Templated Type Families 347
- Templated Type Classes 350
- Multiline Strings 351
- git-embed .. 352
Stephen Diehl (@smdiehl)

This is the fourth draft of this document.

PDF Version

License

This code and text are dedicated to the public domain. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

You may copy and paste any code here verbatim into your codebase, wiki, blog, book or Haskell musical production as you see fit. The Markdown and Haskell source is available on Github. Pull requests are always accepted for changes and additional content. This is a living document.

Changelog

2.3

- Stack
- Stackage
- ghcid
- Nix (Removed)
- Aeson (Updated)
- Language Extensions (Updated)
- Type Holes (Updated)
- Partial Type Signatures
- Pattern Synonyms (Updated)
- Unboxed Types (Updated)
- Vim Integration (Updated)
- Emacs Integration (Updated)
- Strict Language Extension
- Injective Type Families
- Custom Type Errors
- Language Comparisons
- Recursive Do
- Applicative Do
- LiquidHaskell
- Cpp
- MinimalPragma
- Typeclass Extensions
- ExtendedDefaultRules
- mmorph
- integer-gmp
- Static Pointers
- spoon
• monad-control
• monad-base
• postgresql-simple
• hedis
• happy/alex
• configurator
• string-conv
• resource-pool
• resourcet
• optparse-applicative
• hastache
• silently
• Multiline Strings
• git-embed
• Coercible
• -fdefer-type-errors

2.2

Sections that have had been added or seen large changes:

• Irrefutable Patterns
• Hackage
• Exhaustiveness
• Stacktraces
• Laziness
• Skolem Capture
• Foreign Function Pointers
• Attoparsec Parser
• Inline Cmm
• PrimMonad
• Specialization
• unbound-generics
• Editor Integration
• EKG
• Nix
• Haddock
• Corecursion
• Category
• Arrows
• Bifunctors
• ExceptT
• hint / mueval
• Roles
• Higher Kinds
• Kind Polymorphism
• Numeric Tower
Basics

Cabal

Historically Cabal had a component known as cabal-install that has largely been replaced by Stack. The following use of Cabal sandboxes is left for historical reasons and can often be replaced by modern tools.

Cabal is the build system for Haskell.

For example to install the parsec package from Hackage to our system invoke the install command:

```
$ cabal install parsec  # latest version
$ cabal install parsec==3.1.5  # exact version
```

The usual build invocation for Haskell packages is the following:

```
$ cabal get parsec  # fetch source
$ cd parsec-3.1.5

$ cabal configure
$ cabal build
$ cabal install
```

To update the package index from Hackage run:

```
$ cabal update
```
To start a new Haskell project run

```
$ cabal init
$ cabal configure
```

A `.cabal` file will be created with the configuration options for our new project.

The latest feature of Cabal is the addition of Sandboxes (in cabal > 1.18)
which are self contained environments of Haskell packages separate from the
global package index stored in the `./.cabal-sandbox` of our project’s root. To
create a new sandbox for our cabal project run.

```
$ cabal sandbox init
```

In addition the sandbox can be torn down.

```
$ cabal sandbox delete
```

Invoking the cabal commands when in the working directory of a project with
a sandbox configuration set up alters the behavior of cabal itself. For example
the `cabal install` command will only alter the install to the local package
index and will not touch the global configuration.

To install the dependencies from the cabal file into the newly created sandbox
run:

```
$ cabal install --only-dependencies
```

Dependencies can also be built in parallel by passing `-j<n>` where `n` is the
number of concurrent builds.

```
$ cabal install -j4 --only-dependencies
```

Let's look at an example cabal file, there are two main entry points that any
package may provide: a library and an executable. Multiple executables can
be defined, but only one library. In addition there is a special form of executable
entry point `Test-Suite` which defines an interface for unit tests to be invoked
from cabal.

For a library, the `exposed-modules` field in the cabal file indicates which mod-
ules within the package structure will be publicly visible when the package is
installed. These are the user-facing APIs that we wish to expose to downstream
consumers.

For an executable the `main-is` field indicates the Main module for the project
that exports the `main` function to run for the executable logic of the application.
Every module in the package must be listed in one of `other-modules`,
`exposed-modules` or `main-is` fields.

```
name:            mylibrary
version:         0.1
cabal-version:   >= 1.10
author:          Paul Atreides
license:         MIT
```
license-file: LICENSE
synopsis: The code must flow.
category: Math
tested-with: GHC
build-type: Simple

library
exposed-modules:
 Library.ExampleModule1
 Library.ExampleModule2

build-depends:
 base >= 4 && < 5

default-language: Haskell2010

ghc-options: -O2 -Wall -fwarn-tabs

executable "example"
build-depends:
 base >= 4 && < 5,
 mylibrary == 0.1
default-language: Haskell2010
main-is: Main.hs

Test-Suite test
 type: exitcode-stdio-1.0
 main-is: Test.hs
 default-language: Haskell2010
 build-depends:
 base >= 4 && < 5,
 mylibrary == 0.1

To run the “executable” for a library under the cabal sandbox:
$ cabal run
$ cabal run <name>

To load the “library” into a GHCi shell under the cabal sandbox:
$ cabal repl
$ cabal repl <name>

The <name> metavariable is either one of the executable or library declarations in the cabal file, and can optionally be disambiguated by the prefix exe:<name> or lib:<name> respectively.

To build the package locally into the ./.dist/build folder execute the build command.
To run the tests, our package must itself be reconfigured with the
`--enable-tests` and the `build-depends` from the Test-Suite must be
manually installed if not already.

```
$ cabal build
```

In addition arbitrary shell commands can also be invoked with the GHC envi-
ronmental variables set up for the sandbox. Quite common is to invoke a new
shell with this command such that the `ghc` and `ghci` commands use the sandbox
(they don’t by default, which is a common source of frustration).

```
$ cabal exec
```

```
$ cabal exec sh # launch a shell with GHC sandbox path set.
```

The haddock documentation can be built for the local project by executing the
`haddock` command, it will be built to the `./dist` folder.

```
$ cabal haddock
```

When we’re finally ready to upload to Hackage (presuming we have a Hackage
account set up), then we can build the tarball and upload with the following
commands:

```
$ cabal sdist
$ cabal upload dist/mylibrary-0.1.tar.gz
```

Sometimes you’d also like to add a library from a local project into a sandbox.
In this case the add-source command can be used to bring it into the sandbox
from a local directory.

```
$ cabal sandbox add-source /path/to/project
```

The current state of a sandbox can be frozen with all current package constraints
enumerated.

```
$ cabal freeze
```

This will create a file `cabal.config` with the constraint set.

```
constraints:
  mtl ==2.2.1,
  text ==1.1.1.3,
  transformers ==0.4.1.0
```

Using the `cabal repl` and `cabal run` commands is preferable but sometimes
we’d like to manually perform their equivalents at the shell, there are several
useful aliases that rely on shell directory expansion to find the package database
in the current working directory and launch GHC with the appropriate flags:
There is also a zsh script to show the sandbox status of the current working directory in our shell.

```bash
function cabal_sandbox_info() {
  cabal_files=(*.cabal)
  if [ $#cabal_files -gt 0 ]; then
    if [ -f cabal.sandbox.config ]; then
      echo "%{${fg[green]}%}sandboxed%{${reset_color}%}"
    else
      echo "%{${fg[red]}%}not sandboxed%{${reset_color}%}"
    fi
  fi
}
```

The cabal configuration is stored in `$HOME/.cabal/config` and contains various options including credential information for Hackage upload. One addition to configuration is to completely disallow the installation of packages outside of sandboxes to prevent accidental collisions.

```bash
-- Don't allow global install of packages.
require-sandbox: True
```

A library can also be compiled with runtime profiling information enabled. More on this is discussed in the section on Concurrency and profiling.

```bash
library-profiling: True
```

Another common flag to enable is the `documentation` which forces the local build of Haddock documentation, which can be useful for offline reference. On a Linux filesystem these are built to the `/usr/share/doc/ghc-doc/html/libraries/` directory.

```bash
documentation: True
```

If GHC is currently installed the documentation for the Prelude and Base libraries should be available at this local link:

```bash
```

See:
- An Introduction to Cabal Sandboxes
- Storage and Identification of Cabalized Packages
Stack

Stack is a new approach to Haskell package structure that emerged in 2015. Instead of using a rolling build like cabal-install stack breaks up sets of packages into release blocks that guarantee internal compatibility between sets of packages. The package solver for Stack uses a different strategy for resolving dependencies than cabal-install has used historically and is generally more robust.

Contrary to much misinformation, Stack does not replace Cabal as the build system and uses it under the hood. It just makes the process of integrating with third party packages and resolving their dependencies much more streamlined.

Install

To install stack on Ubuntu Linux:

```
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 575159689BEFB442
echo 'deb http://download.fpcomplete.com/ubuntu trusty main'|sudo tee /etc/apt/sources.list.d/fpco.list
sudo apt-get update && sudo apt-get install stack -y
```

For other operating systems see the official install directions here

Usage

Once Stack installed it can be used to setup a build environment on top of your existing project’s cabal file by running:

```
stack init
```

An example stack.yaml file for GHC 7.10.2 would look like the following.

```
resolver: lts-3.14
flags: {}
extra-package-dbs: []
packages: []
extra-deps: []
```

Most of the common libraries used in everyday development The extra-deps package can be used to add Hackage dependencies that are not in the Stackage repository. They are specified by the package and the version key. For instance the zenc package could be added to the stack build

```
extra-deps:
- zenc-0.1.1
```

Stack can be used to install packages and executables into the either current build environment or the global environment. For example the following installs the hint linter executable and places it in on the PATH.
$ stack install hint
To check the set of dependencies

$ stack list-dependencies
Just as with Cabal project the build and debug process can be orchestrated using stack commands.

$ stack build # Build a cabal target
$ stack repl # Launch ghci
$ stack ghc # Invoke the standalone compiler in stack environment
$ stack exec bash # Execute a shell command with the stack GHC environment variables
$ stack build --file-watch # Build on every filesystem change

To visualize the dependency graph use the dot command pipe the output into graphviz and your favorite image viewer:

$ stack dot --external | dot -Tpng | feh -

Flags

The most commonly used GHC compiler flags for detecting common code errors are the following:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-fwarn-tabs</td>
<td>Emit warnings of tabs instead of spaces in the source code.</td>
</tr>
<tr>
<td>-fwarn-unused-imports</td>
<td>Warn about libraries imported without being used</td>
</tr>
<tr>
<td>-fwarn-name-shadowing</td>
<td>Warn on duplicate names in nested bindings</td>
</tr>
<tr>
<td>-fwarn-incomplete-uni-patterns</td>
<td>Emit warnings for incomplete patterns in lambdas or pattern bindings</td>
</tr>
<tr>
<td>-fwarn-incomplete-patterns</td>
<td>Warn on non-exhaustive patterns</td>
</tr>
<tr>
<td>-fwarn-overlapping-patterns</td>
<td>Warn on pattern matching branches that overlap</td>
</tr>
<tr>
<td>-fwarn-incomplete-record-updates</td>
<td>Warn when records are not instantiated with all fields</td>
</tr>
<tr>
<td>-fdefer-type-errors</td>
<td>Turn type errors into warnings</td>
</tr>
<tr>
<td>-fwarn-missing-signatures</td>
<td>Warn about toplevel missing type signatures</td>
</tr>
<tr>
<td>-fwarn-monomorphism-restriction</td>
<td>Warn when the monomorphism restriction is applied implicitly</td>
</tr>
<tr>
<td>-fwarn-orphans</td>
<td>Warn on orphan typeclass instances.</td>
</tr>
<tr>
<td>-fforce-recomp</td>
<td>Force recompilation regardless of timestamp</td>
</tr>
<tr>
<td>-fno-code</td>
<td>Don’t doing code generation, just parse and typecheck.</td>
</tr>
<tr>
<td>-fobject-code</td>
<td>Don’t doing code generation, just parse and typecheck.</td>
</tr>
</tbody>
</table>

Like most compilers -Wall can be used to enable all warnings. Although some of the enabled warnings are somewhat overzealous like -fwarn-unused-do-bind and -fwarn-unused-matches which typically wouldn’t correspond to errors or failures.

Any of these can be added to the cabal file using the ghc-options section of a Cabal target. For example
library mylib

ghc-options:
 -fwarn-tabs
 -fwarn-unused-imports
 -fwarn-missing-signatures
 -fwarn-name-shadowing
 -fwarn-incomplete-patterns

For debugging GHC internals, see the commentary on GHC internals. These are simply the most useful, for all flags see the official reference.

Hackage

Hackage is the upstream source of open source Haskell packages. Being an evolving language, Hackage is many things to many people but there seem to be two dominant philosophies of uploaded libraries.

Reusable Code / Building Blocks

Libraries exist as stable, community supported, building blocks for building higher level functionality on top of an edifice which is common and stable. The author(s) of the library have written the library as a means of packaging up their understanding of a problem domain so that others can build on their understanding and expertise.

A Staging Area / Request for Comments

A common philosophy is that Hackage is a place to upload experimental libraries up as a means of getting community feedback and making the code publicly available. The library author(s) often rationalize putting these kind of libraries up undocumented, often not indicating what the library even does, by simply stating that they intend to tear it all down and rewrite it later. This unfortunately means a lot of Hackage namespace has become polluted with dead-end bit-rotting code. Sometimes packages are also uploaded purely for internal use or to accompany a paper, or just to integrate with the cabal build system. These are often left undocumented as well.

Many other language ecosystems (Python, Javascript, Ruby) favor the former philosophy, and coming to Haskell can be kind of unnerving to see thousands of libraries without the slightest hint of documentation or description of purpose. It is an open question about the cultural differences between the two philosophies and how sustainable the current cultural state of Hackage is.

Needless to say there is a lot of very low-quality Haskell code and documentation out there today, and being conservative in library assessment is a necessary skill. That said, there is also quite a few phenomenal libraries on Hackage that are highly curated by many people.
As a rule of thumb if the Haddock docs for the library does not have a **minimal worked example**, it is usually safe to assume that it is a RFC-style library and probably should be avoided in production-grade code.

As another rule of thumb if the library **predates the text library circa 2007** it probably should be avoided in production code. The way we write Haskell has changed drastically since the early days.

GHCi

GHCi is the interactive shell for the GHC compiler. GHCi is where we will spend most of our time in every day development.

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>:reload</td>
<td>:r</td>
<td>Code reload</td>
</tr>
<tr>
<td>:type</td>
<td>:t</td>
<td>Type inspection</td>
</tr>
<tr>
<td>:kind</td>
<td>:k</td>
<td>Kind inspection</td>
</tr>
<tr>
<td>:info</td>
<td>:i</td>
<td>Information</td>
</tr>
<tr>
<td>:print</td>
<td>:p</td>
<td>Print the expression</td>
</tr>
<tr>
<td>:edit</td>
<td>:e</td>
<td>Load file in system editor.</td>
</tr>
<tr>
<td>:load</td>
<td>:l</td>
<td>Set the active Main module in the REPL.</td>
</tr>
<tr>
<td>:add</td>
<td>:ad</td>
<td>Load a file into the REPL namespace.</td>
</tr>
<tr>
<td>:browse</td>
<td>:bro</td>
<td>Browse all available symbols in the REPL namespace.</td>
</tr>
</tbody>
</table>

The introspection commands are an essential part of debugging and interacting with Haskell code:

```
: :type 3
3 :: Num a => a

: :kind Either
Either :: * => * => *

: :info Functor
class Functor f where
  fmap :: (a -> b) -> f a -> f b
  (<$)) :: a -> f b -> f a
  -- Defined in 'GHC.Base'
...

: :i (:)

data [] a = ... | a : [a] -- Defined in 'GHC.Types'

infixr 5 :
```

The current state of the global environment in the shell can also be queried. Such as module-level bindings and types:
Or module level imports:

```haskell
import Prelude -- implicit
import Data.Eq
import Control.Monad
```

Or compiler-level flags and pragmas:

```haskell
: :set
options currently set: none.
base language is: Haskell2010
with the following modifiers:
- XNoDatatypeContexts
- XNondecreasingIndentation
GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
- fimplicit-import-qualified
warning settings:

: :showl language
base language is: Haskell2010
with the following modifiers:
- XNoDatatypeContexts
- XNondecreasingIndentation
- XExtendedDefaultRules
```

Language extensions and compiler pragmas can be set at the prompt. See the Flag Reference for the vast set of compiler flag options.

Several commands for interactive shell have shortcuts:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>Show types of evaluated expressions</td>
</tr>
<tr>
<td>+s</td>
<td>Show timing and memory usage</td>
</tr>
<tr>
<td>+m</td>
<td>Enable multi-line expression delimited by :{ and :}.</td>
</tr>
</tbody>
</table>

```haskell
: :set +t
: []
[]
: :set +s
: foldr (+) 0 [1..25]
325
: : Prelude.Integer
```
let foo = do
 putStrLn "hello ghci"

foo

"hello ghci"

The configuration for the GHCi shell can be customized globally by defining a ghci.conf in $HOME/.ghc/ or in the current working directory as ./ghci.conf.

For example we can add a command to use the Hoogle type search from within GHCi.

cabal install hoogle

We can use it by adding a command to our ghci.conf.

:set prompt "": "

:def hlint const . return $ "!: hlint "src""
def hoogle \s -> return $ "!: hoogle --count=15 \"" ++ s ++ "\""

:set hoogle (a -> b) -> f a -> f b

Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b

Prelude fmap :: Functor f => (a -> b) -> f a -> f b

For reasons of sexiness it is desirable to set your GHC prompt to a or a ΠΣ if you're into that lifestyle.

:set prompt ": "

:set prompt "ΠΣ: "

GHCi Performance

For large projects GHCi with the default flags can use quite a bit of memory and take a long time to compile. To speed compilation by keeping artifacts for compiled modules around we can enable object code compilation instead of bytecode.

:set -fobject-code

This has some drawbacks in that type information provided to the shell can sometimes be less informative and break with some language extensions. In that case you can temporarily reenable bytecode on a per module basis with the opposite flag.

:set -fbyte-code

:load MyModule.hs
If you all you need is just to typecheck your code in the interactive shell then disabling code generation entirely makes reloads almost instantaneous.

```
:set -fbyte-code
```

Editor Integration

Haskell has a variety of editor tools that can be used to provide interactive development feedback and functionality such as querying types of subexpressions, linting, type checking, and code completion.

Many prepackaged setups exist to expedite the process of setting up many of the programmer editors for Haskell development. In particular ghc-mod can remarkably improve the efficiency and productivity.

Vim
- haskell-vim-now
- Vim and Haskell in 2016

Emacs
- Chris Done’s Emacs Config
- Haskell Development From Emacs
- Structured Haskell Mode

Bottoms

```
error :: String -> a
undefined :: a
```

The bottom is a singular value that inhabits every type. When evaluated the semantics of Haskell no longer yields a meaningful value. It’s usually written as the symbol ￿ (i.e. the compiler flipping you off).

An example of an infinite looping term:

```
f :: a
f = let x = x in x
```

The `undefined` function is nevertheless extremely practical to accommodate writing incomplete programs and for debugging.

```
f :: a -> Complicated Type
f = undefined -- write tomorrow, typecheck today!
```

Partial functions from non-exhaustive pattern matching is probably the most common introduction of bottoms.

```
data F = A | B
case x of
  A -> ()
```
The above is translated into the following GHC Core with the exception inserted for the non-exhaustive patterns. GHC can be made more vocal about incomplete patterns using the `-fwarn-incomplete-patterns` and `-fwarn-incomplete-uni-patterns` flags.

```
case x of _ { 
  A -> (); 
  B -> patError "<interactive>:3:11-31|case" 
}
```

The same holds with record construction with missing fields, although there’s almost never a good reason to construct a record with missing fields and GHC will warn us by default.

```
data Foo = Foo { example1 :: Int } 
f = Foo {}
```

Again this has an error term put in place by the compiler:

```
Foo (recConError "<interactive>:4:9-12|a")
```

What’s not immediately apparent is that they are used extensively throughout the Prelude, some for practical reasons others for historical reasons. The canonical example is the `head` function which as written `[a] -> a` could not be well-typed without the bottom.

```
import GHC.Err 
import Prelude hiding (head, (!!), undefined) 

-- degenerate functions 

undefined :: a 
undefined = error "Prelude.undefined"

head :: [a] -> a 
head (x:_ ) = x 
head [] = error "Prelude.head: empty list"

(!!) :: [a] -> Int -> a 
xs !!! n | n < 0 = error "Prelude.!!: negative index" 
[] !!! _ = error "Prelude.!!: index too large" 
(x:_ ) !!! 0 = x 
(_:xs) !!! n = xs !! (n-1)
```

It’s rare to see these partial functions thrown around carelessly in production code and the preferred method is instead to use the safe variants provided in `Data.Maybe` combined with the usual fold functions `maybe` and `either` or to use pattern matching.

```
listToMaybe :: [a] -> Maybe a 
listToMaybe [] = Nothing 
```
listToMaybe (a:_)) = Just a

When a bottom defined in terms of error is invoked it typically will not generate any position information, but the function used to provide assertions assert can be short circuited to generate position information in the place of either undefined or error call.

```haskell
import GHC.Base

foo :: a
foo = undefined
  -- *** Exception: Prelude.undefined

bar :: a
bar = assert False undefined
  -- *** Exception: src/fail.hs:8:7-12: Assertion failed

See: Avoiding Partial Functions

Exhaustiveness

Pattern matching in Haskell allows for the possibility of non-exhaustive patterns, or cases which are not exhaustive and instead of yielding a value halt from an incomplete match.

Partial functions from non-exhaustivity are controversial subject, and large use of non-exhaustive patterns is considered a dangerous code smell. Although the complete removal of non-exhaustive patterns from the language entirely would itself be too restrictive and forbid too many valid programs.

For example, the following function given a Nothing will crash at runtime and is otherwise a valid type-checked program.

```haskell
unsafe (Just x) = x + 1
```

There are however flags we can pass to the compiler to warn us about such things or forbid them entirely either locally or globally.

```bash
$ ghc -c -Wall -Werror A.hs
A.hs:3:1:
 Warning: Pattern match(es) are non-exhaustive
 In an equation for `unsafe': Patterns not matched: Nothing
```

The -Wall or incomplete pattern flag can also be added on a per-module basis with the OPTIONS_GHC pragma.

```haskell
{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}
```

A more subtle case is when implicitly pattern matching with a single “uni-pattern” in a lambda expression. The following will fail when given a Nothing.
boom = \( \text{Just} \ a \rightarrow \text{something} \)

This occurs frequently in let or do-blocks which after desugaring translate into
a lambda like the above example.

boom = let
  \text{Just} \ a = \text{something}

boom = do
  \text{Just} \ a \leftarrow \text{something}

GHC can warn about these cases with the \texttt{-fwarn-incomplete-uni-patterns}
flag.

Grossly speaking any non-trivial program will use some measure of partial func-
tions, it’s simply a fact. This just means there exists obligations for the pro-
gramer than cannot be manifest in the Haskell type system.

**Debugger**

Although its use is somewhat rare, GHCi actually does have a buildin debugger.
Debugging uncaught exceptions from bottoms or asynchronous exceptions is in
similar style to debugging segfaults with gdb.

\[
\begin{align*}
& : \text{set} \ -f\text{break-on-exception} \\
& : \text{trace} \ main \\
& : \text{hist} \\
& : \text{back}
\end{align*}
\]

**Stacktraces**

With runtime profiling enabled GHC can also print a stack trace when an di-
verging bottom term (error, undefined) is hit, though this requires a special flag
and profiling to be enabled, both are disabled by default. So for example:

\[
\begin{align*}
& \text{import} \ \text{Control.Exception} \\
& f \ x = g \ x \\
& g \ x = \text{error} \ (\text{show} \ x) \\
& \text{main} = \text{try} \ (\text{evaluate} \ (f \ ())) :: \text{IO} \ (\text{Either SomeException} \ ())
\end{align*}
\]

\[
\text{ghc} \ -O0 \ -rtsopts=all \ -prof \ -auto-all \ --make \ stacktrace.hs \\
./stacktrace +RTS +xc
\]

And indeed the runtime tells us that the exception occurred in the function \( g \)
and enumerates the call stack.
*** Exception (reporting due to +RTS -xc): (THUNK_2_0), stack trace:
Main.g,
called from Main.f,
called from Main.main,
called from Main.CAF
--> evaluated by: Main.main,
called from Main.CAF

It is best to run this without optimizations applied -O0 so as to preserve the
original call stack as represented in the source. With optimizations applied this
may often entirely different since GHC will rearrange the program in rather
drastic ways.

See:
  • xc flag

Trace

Haskell being pure has the unique property that most code is introspectable on
its own, as such the “printf” style of debugging is often unnecessary when we
can simply open GHCi and test the function. Nevertheless Haskell does come
with an unsafe trace function which can be used to perform arbitrary print
statements outside of the IO monad.

```haskell
import Debug.Trace

example1 :: Int
example1 = trace "impure print" 1

example2 :: Int
example2 = traceShow "tracing" 2

example3 :: [Int]
example3 = [trace "will not be called" 3]

main :: IO ()
main = do
 print example1
 print example2
 print $ length example3
 -- impure print
 -- 1
 -- "tracing"
 -- 2
 -- 1
```

26
Trace uses `unsafePerformIO` under the hood and shouldn’t be used in stable code.

In addition to just the trace function, several common monadic patterns are quite common.

```haskell
import Text.Printf
import Debug.Trace

traceM :: (Monad m) => String -> m ()
traceM string = trace string $ return ()

traceShowM :: (Show a, Monad m) => a -> m ()
traceShowM = traceM . show

tracePrintfM :: (Monad m, PrintfArg a) => String -> a -> m ()
tracePrintfM s = traceM . printf s
```

**Type Holes**

Since GHC 7.8 we have a new tool for debugging incomplete programs by means of typed holes. By placing an underscore on any value on the right hand-side of a declaration GHC will throw an error during type-checker that reflects the possible values that could placed at this point in the program to make the program type-check.

```haskell
instance Functor [] where
 fmap f (x:xs) = f x : fmap f _
```

```
src/typedhole.hs:7:32:
 Found hole ‘_’ with type: [a]
 Where: ‘a’ is a rigid type variable bound by
 the type signature for fmap :: (a -> b) -> [a] -> [b]
 at src/typedhole.hs:7:3
 Relevant bindings include
 xs :: [a] (bound at src/typedhole.hs:7:13)
 x :: a (bound at src/typedhole.hs:7:11)
 f :: a -> b (bound at src/typedhole.hs:7:8)
 fmap :: (a -> b) -> [a] -> [b] (bound at src/typedhole.hs:7:3)
 In the second argument of ‘fmap’, namely ‘_’
 In the second argument of ‘(:)’, namely ‘fmap f _’
 In the expression: f x : fmap f _
Failed, modules loaded: none.
```

GHC has rightly suggested that the expression needed to finish the program is `xs :: [a]`. 
Deferred Type Errors

As of 7.8 GHC support the option of pushing type errors to runtime errors allowing us to run the program and let it simply fail only when a mistyped expression is evaluated, letting the rest of the program proceed to run. This is enabled with the `-fdefer-type-errors` which can be enabled at the module level, when compiled or inside of a GHCI interactive session.

```haskell
{-# OPTIONS_GHC -fdefer-type-errors #-}

x :: ()
x = print 3

y :: Char
y = 0

z :: Int
z = 0 + "foo"

main :: IO ()
main = do
 print x
```

The resulting program will compile but at runtime we’ll see a message like the following when a pathological term is evaluated.

```bash
defer: defer.hs:4:5:
 Couldn’t match expected type ‘()’ with actual type ‘IO ()’
 In the expression: print 3
 In an equation for ‘x’: x = print 3
(deferred type error)
```

ghcid

ghcid is a lightweight IDE hook that allows continuous feedback whenever code is updated.

It is run from the command line in the root of the cabal project directory by specifying a command to run, for example `cabal repl` or `stack repl`.

```bash
ghcid --command="cabal repl"
ghcid --command="stack repl"
```

Any subsequent change to your project’s filesystem will trigger and automatic reload.
Haddock

Haddock is the automatic documentation tool for Haskell source code. It integrates with the usual cabal toolchain.

```haskell
-- | Documentation for f
f :: a -> a
f = ...

-- | Multiline documentation for the function
-- f with multiple arguments.
fmap :: Functor f =>
 => (a -> b) -- ^ function
 -> f a -- ^ input
 -> f b -- ^ output

data T a b
 = A a -- ^ Documentation for A
 | B b -- ^ Documentation for B
```

Elements within a module (value, types, classes) can be hyperlinked by enclosing the identifier in single quotes.

```haskell
data T a b
 = A a -- ^ Documentation for 'A'
 | B b -- ^ Documentation for 'B'
```

Modules themselves can be referenced by enclosing them in double quotes.

```haskell
-- | Here we use the "Data.Text" library and import
-- the 'Data.Text.pack' function.
-- | An example of a code block.
--
-- @
-- f x = f (f x)
-- @

-- > f x = f (f x)
-- / Example of an interactive shell session.
--
-- >>> factorial 5
-- 120
```

Headers for specific blocks can be added by prefacing the comment in the module block with a star:

```haskell
module Foo (
 -- * My Header
 example1,
```
Sections can also be delineated by $ blocks that pertain to references in the body of the module:

```haskell
module Foo (
 -- $section1
 example1,
 example2
)
```

```haskell
-- $section1
-- Here is the documentation section that describes the symbols
-- `example1' and `example2'.
```

Links can be added with the syntax:

```haskell
<url text>
```

Images can also be included, so long as the path is relative to the haddock or an absolute reference.

```haskell
<<diagram.png title>>
```

Haddock options can also be specified with pragmas in the source, either on module or project level.

```haskell
{-# OPTIONS_HADDOCK show-extensions, ignore-exports #-}
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ignore-exports</td>
<td>Ignores the export list and includes all signatures in scope.</td>
</tr>
<tr>
<td>not-home</td>
<td>Module will not be considered in the root documentation.</td>
</tr>
<tr>
<td>show-extensions</td>
<td>Annotates the documentation with the language extensions used.</td>
</tr>
<tr>
<td>hide</td>
<td>Forces the module to be hidden from Haddock.</td>
</tr>
<tr>
<td>prune</td>
<td>Omits definitions with no annotations.</td>
</tr>
</tbody>
</table>

**Monads**

**Eightfold Path to Monad Satori**

Much ink has been spilled waxing lyrical about the supposed mystique of monads. Instead I suggest a path to enlightenment:

1. Don’t read the monad tutorials.
2. No really, don’t read the monad tutorials.
3. Learn about Haskell types.
4. Learn what a typeclass is.
5. Read the Typeclassopedia.
6. Read the monad definitions.
7. Use monads in real code.
8. Don’t write monad-analogy tutorials.

In other words, the only path to understanding monads is to read the fine source, fire up GHC and write some code. Analogies and metaphors will not lead to understanding.

Monadic Myths

The following are all false:

- Monads are impure.
- Monads are about effects.
- Monads are about state.
- Monads are about imperative sequencing.
- Monads are about IO.
- Monads are dependent on laziness.
- Monads are a “back-door” in the language to perform side-effects.
- Monads are an embedded imperative language inside Haskell.
- Monads require knowing abstract mathematics.

See: What a Monad Is Not

Laws

Monads are not complicated, the implementation is a typeclass with two functions, \((\gg\gg)\) pronounced “bind” and \(\text{return}\). Any preconceptions one might have for the word “return” should be discarded, it has an entirely different meaning.

```haskell
class Monad m where
 (\gg\gg) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b
 return :: a \rightarrow m a
```

Together with three laws that all monad instances must satisfy.

Law 1

\(\text{return}\ a \gg\gg f\ f\ a\)

Law 2

\(m \gg\gg \text{return} \rightarrow m\)

Law 3

\((m \gg\gg f) \gg\gg g\ m \gg\gg (\lambda x \rightarrow f\ x \gg\gg g)\)
There is an auxiliary function \((\gg\gg)\) defined in terms of the bind operation that discards its argument.

\[
(\gg\gg) : \text{Monad } m \Rightarrow m a \Rightarrow m b \Rightarrow m b
\]

\[
m \gg\gg k = m \gg\gg \lambda \_ \Rightarrow k
\]

See: Monad Laws

Do Notation

Monads syntax in Haskell is written in sugared form that is entirely equivalent to just applications of the monad operations. The desugaring is defined recursively by the rules:

\[
do \{ a \leftarrow f ; m \} f \gg\gg \lambda a \Rightarrow do \{ m \}
\]

\[
do \{ f ; m \} f \gg do \{ m \}
\]

\[
do \{ m \} m
\]

So for example the following are equivalent:

\[
do
\begin{align*}
a & \leftarrow f \\
b & \leftarrow g \\
c & \leftarrow h \\
& \text{return (a, b, c)}
\end{align*}
\]

\[
do
\begin{align*}
a & \leftarrow f; \\
b & \leftarrow g; \\
c & \leftarrow h; \\
& \text{return (a, b, c)}
\end{align*}
\]

\[
f \gg\gg \lambda a \rightarrow \\
g \gg\gg \lambda b \rightarrow \\
h \gg\gg \lambda c \rightarrow \\
& \text{return (a, b, c)}
\]

If one were to write the bind operator as an uncurried function (this is not how Haskell uses it) the same desugaring might look something like the following chain of nested binds with lambdas.

\[
\text{bindMonad}(f, \lambda a:\text{Monad a}:
\text{bindMonad}(g, \lambda b:\text{lambda b}:
\text{bindMonad}(h, \lambda c:\text{lambda c}:
\text{returnMonad (a,b,c)))))
\]

In the do-notation the monad laws from above are equivalently written:

Law 1
do y <- return x
  f y
= do f x

Law 2

do x <- m
  return x
= do m

Law 3

do b <- do a <- m
  f a
  g b
= do a <- m
  b <- f a
  g b
= do a <- m
  do b <- f a
  g b

See: Haskell 2010: Do Expressions

Maybe

The *Maybe* monad is the simplest first example of a monad instance. The *Maybe* monad models computations which fail to yield a value at any point during computation.

data Maybe a = Just a | Nothing

instance Monad Maybe where
  (Just x) >>= k = k x
  Nothing    >>= k = Nothing

  return = Just
  (Just 3) >>= (\x -> return (x + 1))
  -- Just 4

Nothing >>= (\x -> return (x + 1))
  -- Nothing

return 4 :: Maybe Int
  -- Just 4
example1 :: Maybe Int
example1 = do
  a <- Just 3
  b <- Just 4
  return $ a + b
-- Just 7

example2 :: Maybe Int
example2 = do
  a <- Just 3
  b <- Nothing
  return $ a + b
-- Nothing

List

The List monad is the second simplest example of a monad instance.

instance Monad [] where
  m >>= f = concat (map f m)
  return x = [x]

So for example with:

m = [1,2,3,4]
f = \x -> [1,0]

The evaluation proceeds as follows:

m >>= f
==> [1,2,3,4] >>= \x -> [1,0]
==> concat (map \x -> [1,0]) [1,2,3,4])
==> concat ([1,0],[1,0],[1,0],[1,0])
==> [1,0,1,0,1,0,1,0]

The list comprehension syntax in Haskell can be implemented in terms of the list monad.

a = [f x y | x <- xs, y <- ys, x == y ]

-- Identical to 'a'
b = do
  x <- xs
  y <- ys
  guard $ x == y
  return $ f x y
example :: [(Int, Int, Int)]
example = do

34
a <- [1,2]
b <- [10,20]
c <- [100,200]
return (a,b,c)
-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

**IO**

A value of type `IO a` is a computation which, when performed, does some I/O before returning a value of type `a`. Desugaring the IO monad:

```haskell
main :: IO ()
main = do putStrLn "What is your name: "
 name <- getLine
 putStrLn name

main :: IO ()
main = putStrLn "What is your name:"
 >>= _ -> getLine >>= \name -> putStrLn name

main :: IO ()
main = putStrLn "What is your name:"
 >>= (getLine >>= (\name -> putStrLn name))
```

See: Haskell 2010: Basic/Input Output

**Whats the point?**

Consider the non-intuitive fact that we now have a uniform interface for talking about three very different but foundational ideas for programming: Failure, Collections, and Effects.

Let's write down a new function called `sequence` which folds a function `mcons`, which we can think of as analogues to the list constructor (i.e. `(a : b : [])`) except it pulls the two list elements out of two monadic values `(p,q)` using bind.

```haskell
sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

mcons :: Monad m => m t -> m [t] -> m [t]
mcons p q = do
 x <- p
 y <- q
 return (x:y)
```

What does this function mean in terms of each of the monads discussed above?

Maybe
Sequencing a list of a `Maybe` values allows us to collect the results of a series of computations which can possibly fail and yield the aggregated values only if they all succeeded.

```haskell
sequence :: [Maybe a] -> Maybe [a]
```

```haskell
sequence [Just 3, Just 4]
-- Just [3,4]
```

```haskell
sequence [Just 3, Just 4, Nothing]
-- Nothing
```

**List**

Since the bind operation for the list monad forms the pairwise list of elements from the two operands, folding the bind over a list of lists with `sequence` implements the general Cartesian product for an arbitrary number of lists.

```haskell
sequence :: [[a]] -> [[a]]
```

```haskell
sequence [[1,2,3],[10,20,30]]
-- [[1,10],[1,20],[1,30],[2,10],[2,20],[2,30],[3,10],[3,20],[3,30]]
```

**IO**

Sequence takes a list of IO actions, performs them sequentially, and returns the list of resulting values in the order sequenced.

```haskell
sequence :: [IO a] -> IO [a]
```

```haskell
sequence [getLine, getLine]
-- a
-- b
-- ["a","b"]
```

So there we have it, three fundamental concepts of computation that are normally defined independently of each other actually all share this similar structure that can be abstracted out and reused to build higher abstractions that work for all current and future implementations. If you want a motivating reason for understanding monads, this is it! This is the essence of what I wish I knew about monads looking back.

See: Control.Monad

**Reader Monad**

The reader monad lets us access shared immutable state within a monadic context.

```haskell
ask :: Reader r r
asks :: (r -> a) -> Reader r a
local :: (r -> r) -> Reader r a -> Reader r a
runReader :: Reader r a -> r -> a
```
import Control.Monad.Reader

data MyContext = MyContext
  { foo :: String
  , bar :: Int
  } deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do
  n <- asks bar
  x <- asks foo
  if n > 0
    then return (Just x)
    else return Nothing

ex1 :: Maybe String
ex1 = runReader computation $ MyContext "hello" 1

ex2 :: Maybe String
ex2 = runReader computation $ MyContext "haskell" 0

A simple implementation of the Reader monad:

newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
  return a = Reader $ \_ -> a
  m >>= k = Reader $ \r -> runReader (k (runReader m r)) r

ask :: Reader a a
ask = Reader id

asks :: (r -> a) -> Reader r a
asks f = Reader f

local :: (r -> r) -> Reader r a -> Reader r a
local f m = Reader $ runReader m . f

Writer Monad

The writer monad lets us emit a lazy stream of values from within a monadic context.

tell :: w -> Writer w ()
execWriter :: Writer w a -> w
runWriter :: Writer w a -> (a, w)
import Control.Monad.Writer

type MyWriter = Writer [Int] String

type MyWriter = Writer [Int] String

example :: MyWriter
example = do
  tell [1..5]
  tell [5..10]
  return "foo"

A simple implementation of the Writer monad:

import Data.Monoid

newtype Writer w a = Writer { runWriter :: (a, w) }

instance Monoid w => Monad (Writer w) where
  return a = Writer (a, mempty)
  m >>= k = Writer $ let
    (a, w) = runWriter m
    (b, w') = runWriter (k a)
    in (b, w `mappend` w')

execWriter :: Writer w a -> w
execWriter m = snd (runWriter m)

tell :: w -> Writer w ()
tell w = Writer ((), w)

This implementation is lazy so some care must be taken that one actually wants to only generate a stream of thunks. Most often the lazy writer is not suitable for use, instead implement the equivalent structure by embedding some monomial object inside a StateT monad, or using the strict version.

import Control.Monad.Writer.Strict

State Monad

The state monad allows functions within a stateful monadic context to access and modify shared state.

runState :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s
import Control.Monad.State

test :: State Int Int
test = do
  put 3
  modify (+1)
  get

main :: IO ()
main = print $ execState test 0

The state monad is often mistakenly described as being impure, but it is in fact entirely pure and the same effect could be achieved by explicitly passing state. A simple implementation of the State monad is only a few lines:

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where
  return a = State $ \s -> (a, s)

  State act >>= k = State $ \s ->
    let (a, s') = act s
        in runState (k a) s'

get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ \_ -> ()

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

evalState :: State s a -> s -> a
evalState act = fst . runState act

execState :: State s a -> s -> s
execState act = snd . runState act

Monad Tutorials

So many monad tutorials have been written that it begs the question: what makes monads so difficult when first learning Haskell? I hypothesize there are three aspects to why this is so:

1. There are several levels on indirection with desugaring.
A lot of Haskell that we write is radically rearranged and transformed into an entirely new form under the hood.

Most monad tutorials will not manually expand out the do-sugar. This leaves the beginner thinking that monads are a way of dropping into a pseudo-imperative language inside of code and further fuels that misconception that specific instances like IO are monads in their full generality.

```haskell
main = do
 x <- getline
 putStrLn x
 return ()
```

Being able to manually desugar is crucial to understanding.

```haskell
main =
 getline >>= \x ->
 putStrLn x >>= _ ->
 return ()
```

2. Asymmetric binary infix operators for higher order functions are not common in other languages.

```haskell
(>>=) :: Monad m => m a -> (a -> m b) -> m b
```

On the left hand side of the operator we have an \( m \ a \) and on the right we have \( a \rightarrow m \ b \). Although some languages do have infix operators that are themselves higher order functions, it is still a rather rare occurrence.

So with a function desugared, it can be confusing that \( (>>=) \) operator is in fact building up a much larger function by composing functions together.

```haskell
main =
 getline >>= \x ->
 putStrLn >>= _ ->
 return ()
```

Written in prefix form, it becomes a little bit more digestible.

```haskell
main =
 (>>=) getline (\x ->
 (>>=) putStrLn (_ ->
 return ()
)
)
```

Perhaps even removing the operator entirely might be more intuitive coming from other languages.

```haskell
main = bind getline (\x -> bind putStrLn (_ -> return ()))
 where
 bind x y = x >>= y
```

3. Ad-hoc polymorphism is not commonplace in other languages.
Haskell’s implementation of overloading can be unintuitive if one is not familiar with type inference. It is abstracted away from the user but the \( \triangleright= \) or bind function is really a function of 3 arguments with the extra typeclass dictionary argument \( \text{dMonad} \) implicitly threaded around.

```haskell
main $dMonad = bind $dMonad getLine (\x -> bind $dMonad putStrLn (_ -> return $dMonad ()))
```

Except in the case where the parameter of the monad class is unified (through inference) with a concrete class instance, in which case the instance dictionary \( \text{dMonadIO} \) is instead spliced throughout.

```haskell
main :: IO ()
main = bind $dMonadIO getLine (\x -> bind $dMonadIO putStrLn (_ -> return $dMonadIO ()))
```

Now, all of these transformations are trivial once we understand them, they’re just typically not discussed. In my opinion the fundamental fallacy of monad tutorials is not that intuition for monads is hard to convey (nor are metaphors required!), but that novices often come to monads with an incomplete understanding of points (1), (2), and (3) and then trip on the simple fact that monads are the first example of a Haskell construct that is the confluence of all three.

See: Monad Tutorial Fallacy

## Monad Transformers

**mtl / transformers**

So the descriptions of Monads in the previous chapter are a bit of a white lie. Modern Haskell monad libraries typically use a more general form of these written in terms of monad transformers which allow us to compose monads together to form composite monads. The monads mentioned previously are subsumed by the special case of the transformer form composed with the Identity monad.

<table>
<thead>
<tr>
<th>Monad</th>
<th>Transformer</th>
<th>Type</th>
<th>Transformed Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maybe</td>
<td>MaybeT</td>
<td>Maybe a</td>
<td>m (Maybe a)</td>
</tr>
<tr>
<td>Reader</td>
<td>ReaderT</td>
<td>r -&gt; a</td>
<td>r -&gt; m a</td>
</tr>
<tr>
<td>Writer</td>
<td>WriterT</td>
<td>(a,w)</td>
<td>m (a,w)</td>
</tr>
<tr>
<td>State</td>
<td>StateT</td>
<td>s -&gt; (a,s)</td>
<td>s -&gt; m (a,s)</td>
</tr>
</tbody>
</table>

```haskell
type State s = StateT s Identity
type Writer w = WriterT w Identity
type Reader r = ReaderT r Identity
```

```haskell
instance Monad m => MonadState s (StateT s m)
instance Monad m => MonadReader r (ReaderT r m)
```
instance (Monoid w, Monad m) => MonadWriter w (WriterT w m)

In terms of generality the mtl library is the most common general interface for these monads, which itself depends on the transformers library which generalizes the “basic” monads described above into transformers.

Transformers

At their core monad transformers allow us to nest monadic computations in a stack with an interface to exchange values between the levels, called lift.

lift :: (Monad m, MonadTrans t) => m a -> t m a
liftIO :: MonadIO m => IO a -> m a

class MonadTrans t where
    lift :: Monad m => m a -> t m a

class (Monad m) => MonadIO m where
    liftIO :: IO a -> m a

instance MonadIO IO where
    liftIO = id

Just as the base monad class has laws, monad transformers also have several laws:

Law #1
lift . return = return

Law #2
lift (m >>= f) = lift m >>= (lift . f)

Or equivalently:

Law #1
    lift (return x)

= return x

Law #2
    do x <- lift m
      lift (f x)

= lift $ do x <- m
          f x

It’s useful to remember that transformers compose outside-in but are unrolled inside out.

See: Monad Transformers: Step-By-Step
Basics

The most basic use requires us to use the T-variants of each of the monad transformers for the outer layers and to explicit `lift` and `return` values between each the layers. Monads have kind \((* \to * )\) so monad transformers which take monads to monads have \(((* \to * ) \to * \to *)\):

\[
\text{Monad} \ (m : : * \to *) \\
\text{MonadTrans} \ (t : : (* \to *) \to * \to *) \\
\]

So for example if we wanted to form a composite computation using both the Reader and Maybe monads we can now put the Maybe inside of a `ReaderT` to form `ReaderT t Maybe a`.

```haskell
import Control.Monad.Reader

type Env = [(String, Int)]
type Eval a = ReaderT Env Maybe a

data Expr
 = Val Int
 | Add Expr Expr
 | Var String
 deriving (Show)

eval :: Expr \to Eval Int
eval ex = case ex of
 Val n \to return n
 Add x y \to do
 a \leftarrow eval x
 b \leftarrow eval y
 return (a+b)
 Var x \to do
 env \leftarrow ask
 val \leftarrow lift (lookup x env)
 return val

eval :: Env
env = [("x", 2), ("y", 5)]

ex1 :: Eval Int
ex1 = eval (Add (Val 2) (Add (Val 1) (Var "x")))

example1, example2 :: Maybe Int
```
The fundamental limitation of this approach is that we find ourselves lifting and returning a lot.

**ReaderT**

For example, there exist three possible forms of the Reader monad. The first is the Haskell 98 version that no longer exists but is useful for understanding the underlying ideas. The other two are the transformers variant and the mtl variants.

**Reader**

```haskell
define Reader r a = Reader { runReader :: r -> a }

instance MonadReader r (Reader r) where
 ask = Reader id
 local f m = Reader (runReader m . f)
```

**ReaderT**

```haskell
define ReaderT r m a = ReaderT { runReaderT :: r -> m a }

instance (Monad m) => Monad (ReaderT r m) where
 return a = ReaderT $ _ -> return a
 m >>= k = ReaderT $ \r -> do
 a <- runReaderT m r
 runReaderT (k a) r

instance MonadTrans (ReaderT r) where
 lift m = ReaderT $ _ -> m
```

**MonadReader**

```haskell
class (Monad m) => MonadReader r m | m -> r where
 ask :: m r
 local :: (r -> r) -> m a -> m a

instance (Monad m) => MonadReader r (ReaderT r m) where
 ask = ReaderT return
 local f m = ReaderT $ \r -> runReaderT m (f r)
```

So hypothetically the three variants of ask would be:

```haskell
ask :: Reader r a
ask :: Monad m => ReaderT r m r
ask :: MonadReader r m => m r
```

In practice only the last one is used in modern Haskell.
Newtype Deriving

Newtypes let us reference a data type with a single constructor as a new distinct type, with no runtime overhead from boxing, unlike an algebraic datatype with single constructor. Newtype wrappers around strings and numeric types can often drastically reduce accidental errors.

Consider the case of using a newtype to distinguish between two different text blobs with different semantics. Both have the same runtime representation as text object but are distinguished statically so that plaintext can not be accidentally interchanged with encrypted text.

```haskell
newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext
```

The other common use case is using newtypes to derive logic for deriving custom monad transformers in our business logic. Using `XGeneralizedNewtypeDeriving` we can recover the functionality of instances of the underlying types composed in our transformer stack.

```haskell
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
newtype Velocity = Velocity { unVelocity :: Double }
 deriving (Eq, Ord)

v :: Velocity
v = Velocity 2.718

x :: Double
x = 6.636

-- Type error is caught at compile time even though they are the same value at runtime!
err = v + x

newtype Quantity v a = Quantity a
 deriving (Eq, Ord, Num, Show)

data Haskeller
type Haskellers = Quantity Haskeller Int

a :: Quantity 2 :: Haskellers
b :: Quantity 6 :: Haskellers

totalHaskellers :: Haskellers
totalHaskellers = a + b
```


```
Couldn't match type `Double' with `Velocity'
Expected type: Velocity
 Actual type: Double
In the second argument of `(+)\', namely `x'
In the expression: v + x

Using newtype deriving with the mtl library typeclasses we can produce flattened transformer types that don't require explicit lifting in the transform stack. For example, here is a little stack machine involving the Reader, Writer and State monads.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.State

type Stack = [Int]
type Output = [Int]
type Program = [Instr]

newtype VM a = ReaderT Program (WriterT Output (State Stack)) a

newtype Comp a = Comp { unComp :: VM a }
deriving (Monad, MonadReader Program, MonadWriter Output, MonadState Stack)

data Instr = Push Int | Pop | Puts

evalInstr :: Instr -> Comp ()
evalInstr instr = case instr of
 Pop -> modify tail
 Push n -> modify (n:)
 Puts -> do
 tos <- gets head
 tell [tos]

eval :: Comp ()
eval = do
 instr <- ask
 case instr of
 [] -> return ()
 (i:is) -> evalInstr i >> local (const is) eval

execVM :: Program -> Output
execVM = flip evalState [] . execWriterT . runReaderT (unComp eval)

program :: Program
```
program = [
  Push 42,
  Push 27,
  Puts,
  Pop,
  Puts,
  Pop
]

main :: IO ()
main = mapM_ print $ execVM program

Pattern matching on a newtype constructor compiles into nothing. For example, the `extractB` function does not scrutinize the `MkB` constructor like the `extractA` does, because `MkB` does not exist at runtime, it is purely a compile-time construct.

data A = MkA Int
newtype B = MkB Int

extractA :: A -> Int
extractA (MkA x) = x

extractB :: B -> Int
extractB (MkB x) = x

Efficiency

The second monad transformer law guarantees that sequencing consecutive lift operations is semantically equivalent to lifting the results into the outer monad.

do x <- lift m == lift $ do x <- m
    lift (f x) = f x

Although they are guaranteed to yield the same result, the operation of lifting the results between the monad levels is not without cost and crops up frequently when working with the monad traversal and looping functions. For example, all three of the functions on the left below are less efficient than the right hand side which performs the bind in the base monad instead of lifting on each iteration.

-- Less Efficient    More Efficient
forever (lift m) == lift (forever m)
mapM_ (lift . f) xs == lift (mapM_ f xs)
forM_ xs (lift . f) == lift (forM_ xs f)
Monad Morphisms

The base monad transformer package provides a MonadTrans class for lifting between layer:

\[
\text{lift} :: \text{Monad } m \Rightarrow m a \rightarrow t m a
\]

But often times we need to work with and manipulate our monad transformer stack to either produce new transformers, modify existing ones, or extend an upstream library with new layers. The mmorph library provides the capacity to compose monad morphism transformation directly on transformer stacks. The equivalent of type transformer type-level map is the hoist function.

\[
\text{hoist} :: \text{Monad } m \Rightarrow (\forall a. m a \rightarrow n a) \rightarrow t m b \rightarrow t n b
\]

Hoist takes a monad morphism (a mapping a m a to a n a) and applies in on the inner value monad of a transformer stack, transforming the value under the outer layer.

For example the monad morphism generalize takes an Identity into another monad m of the same index. For example this generalizes State s Identity into StateT s m a.

\[
\text{generalize} :: \text{Monad } m \Rightarrow \text{Identity } a \rightarrow m a
\]

So we could generalize an existing transformer to lift a IO layer into it.

\[
\text{import } \text{Control.Monad.State}
\]
\[
\text{import } \text{Control.Monad.Morph}
\]

\[
\text{type } \text{Eval } a = \text{State } [\text{Int}] a
\]

\[
\text{runEval} :: [\text{Int}] \rightarrow \text{Eval } a \rightarrow a
\]
\[
\text{runEval = flip evalState}
\]

\[
\text{pop} :: \text{Eval } \text{Int}
\]
\[
\text{pop = do}
\text{top <- gets head}
\text{modify tail}
\text{return top}
\]

\[
\text{push} :: \text{Int} \rightarrow \text{Eval } ()
\]
\[
\text{push } x = \text{modify } (x:)
\]

\[
\text{ev1} :: \text{Eval } \text{Int}
\]
\[
\text{ev1 = do}
\text{push 3}
\text{push 4}
\text{pop}
\text{pop}
\]
ev2 :: StateT [Int] IO ()
ev2 = do
  result <- hoist generalize ev1
  liftIO $ putStrLn $ "Result: " ++ show result

See: mmorph

Language Extensions

It’s important to distinguish between different categories of language extensions *general* and *specialized*.

The inherent problem with classifying the extensions into the general and specialized categories is that it’s a subjective classification. Haskellers who do type system research will have a very different interpretation of Haskell than people who do web programming. As such this is a conservative assessment, as an arbitrary baseline let’s consider *FlexibleInstances* and *OverloadedStrings* “everyday” while *GADTs* and *TypeFamilies* are “specialized”.

Key

- *Benign* implies that importing the extension won’t change the semantics of the module if not used.
- *Historical* implies that one shouldn’t use this extension, it’s in GHC purely for backwards compatibility. Sometimes these are dangerous to enable.

See: GHC Extension Reference

The Benign

It’s not obvious which extensions are the most common but it’s fairly safe to say that these extensions are benign and are safely used extensively:

- OverloadedStrings
- FlexibleContexts
- FlexibleInstances
- GeneralizedNewtypeDeriving
- TypeSynonymInstances
- MultiParamTypeClasses
- FunctionalDependencies
- NoMonomorphismRestriction
- GADTs
- BangPatterns
- DeriveGeneric
- ScopedTypeVariables
The Dangerous

GHC’s typechecker sometimes just casually tells us to enable language extensions when it can’t solve certain problems. These include:

- DatatypeContexts
- OverlappingInstances
- IncoherentInstances
- ImpredicativeTypes
- AllowAmbigiousTypes

These almost always indicate a design flaw and shouldn’t be turned on to remedy the error at hand, as much as GHC might suggest otherwise!

Type Inference

Inference in Haskell is usually precise, although there are several boundary cases where inference is difficult or impossible to infer a principal type of an expression. There are two common cases:

Mutually Recursive Binding Groups

\[
f \ x = \text{const} \ x \ g \\
g \ y = f \ 'A'
\]

The inferred type signatures are correct in their usage, but don’t represent the most general signatures. When GHC analyzes the module it analyzes the dependencies of expressions on each other, groups them together, and applies substitutions from unification across mutually defined groups. As such the inferred types may not be the most general types possible, and an explicit signature may be desired.

\[
\text{-- Inferred types} \\
f \ :: \ \text{Char} \to \text{Char} \\
g \ :: \ t \to \text{Char}
\]

\[
\text{-- Most general types} \\
f \ :: \ a \to a \\
g \ :: \ a \to \text{Char}
\]

Polymorphic recursion

\[
data \ \text{Tree} \ a = \text{Leaf} \ |
\text{Bin} \ a \ (\text{Tree} \ (a, a))
\]

\[
\text{size} \ \text{Leaf} = 0 \\
\text{size} \ (\text{Bin} \ t) = 1 + 2 \times \text{size} \ t
\]
The problem with this expression is because the inferred type variable \(a\) in \texttt{size}
spans two possible types \((a, (a, a))\), the recursion is polymorphic. These two
types won’t pass the occurs-check of the typechecker and it yields an incorrect
inferred type.

\begin{verbatim}
Occurs check: cannot construct the infinite type: t0 = (t0, t0)
Expected type: Tree t0
Actual type: Tree (t0, t0)
In the first argument of `size', namely `t'
In the second argument of `(*)', namely `size t'
In the second argument of `(+)', namely `2 * size t'
\end{verbatim}

Simply adding an explicit type signature corrects this. Type inference using
polymorphic recursion is undecidable in the general case.

\begin{verbatim}
size :: Tree a -> Int
size Leaf = 0
size (Bin _ t) = 1 + 2 * size t
\end{verbatim}

See: Static Semantics of Function and Pattern Bindings

### Monomorphism Restriction

The most common edge case of the inference is known as the dreaded monomorphism restriction.

When the toplevel declarations of a module are generalized the monomorphism
restricts that toplevel values (i.e. expressions not under a lambda ) whose type
contains the subclass of the \texttt{Num} type from the Prelude are not generalized
and instead are instantiated with a monotype tried sequentially from the list
specified by the \texttt{default} which is normally \texttt{Integer}, then \texttt{Double}.

\begin{verbatim}
-- Double is inferred by type inferencer.
example1 :: Double
exmple1 = 3.14

-- In the presence of a lambda, a different type is inferred!
example2 :: Fractional a => t -> a
example2 _ = 3.14
\end{verbatim}

\begin{verbatim}
default (Integer, Double)
\end{verbatim}

As of GHC 7.8, the monomorphism restriction is switched off by default in
GHCi.

: set +t

: 3

3
Extended Defaulting

Haskell normally applies several defaulting rules for ambiguous literals in the absence of an explicit type signature. When an ambiguous literal is typechecked if at least one of its typeclass constraints is numeric and all of its classes are standard library classes, the module’s default list is consulted, and the first type from the list that will satisfy the context of the type variable is instantiated. So for instance given the following default rules.

default (C1 a, ..., Cn a)

The following set of heuristics is used to determine what to instantiate the ambiguous type variable to.

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

The default default is (Integer, Double)

This is normally fine, but sometimes we’d like more granular control over defaulting. The -XExtendedDefaultRules loosens the restriction that we’re constrained with working on Numerical typeclasses and the constraint that we can only work with standard library classes. If we’d like to have our string literals (using -XOverloadedStrings) automatically default to the more efficient Text implementation instead of String we can twiddle the flag and GHC will perform the right substitution without the need for an explicit annotation on every string literal.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ExtendedDefaultRules #-}

import qualified Data.Text as T

default (T.Text)

e = "foo"

For code typed at the GHCi prompt, the -XExtendedDefaultRules flag is always on, and cannot be switched off.

See: Monomorphism Restriction
Safe Haskell

As everyone eventually finds out there are several functions within the implementation of GHC (not the Haskell language) that can be used to subvert the type-system, they are marked with the prefix unsafe. These functions exist only for when one can manually prove the soundness of an expression but can’t express this property in the type-system or externalities to Haskell.

```haskell
unsafeCoerce :: a -> b
unsafePerformIO :: IO a -> a
```

Using these functions to subvert the Haskell typesystem will cause all measure of undefined behavior with unimaginable pain and suffering, and are strongly discouraged. When initially starting out with Haskell there are no legitimate reason to use these functions at all, period.

The Safe Haskell language extensions allow us to restrict the use of unsafe language features using -XSafe which restricts the import of modules which are themselves marked as Safe. It also forbids the use of certain language extensions (-XTemplateHaskell) which can be used to produce unsafe code. The primary use case of these extensions is security auditing.

```haskell
{-# LANGUAGE Safe #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE Safe #-}

import Unsafe.Coerce
import System.IO.Unsafe

bad1 :: String
bad1 = unsafePerformIO getLine

bad2 :: a
bad2 = unsafeCoerce 3.14 ()

Unsafe.Coerce: Can’t be safely imported!
The module itself isn’t safe.

See: Safe Haskell

Partial Type Signatures

The same hole technique can be applied at the toplevel for signatures:

```haskell
const' :: _
const' x y = x
```

[1 of 1] Compiling Main (src/typedhole.hs, interpreted)
Found hole ‘_’ with type: t1 -> t -> t1
Where: ‘t’ is a rigid type variable bound by
the inferred type of const' :: t1 -> t -> t1 at foo.hs:4:1
‘t1’ is a rigid type variable bound by
the inferred type of const' :: t1 -> t -> t1 at foo.hs:4:1
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘const’': _

Failed, modules loaded: none.

The same wildcards can be used in type contexts to dump out inferred type
class constraints:

succ' :: _ => a -> a
succ' x = x + 1

Found hole ‘_’ with inferred constraints: (Num a)
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘succ’': _ => a -> a
Failed, modules loaded: none.

When the flag -XPartialTypeSignature is passed to GHC and the inferred type
is unambiguous, GHC will let us leave the holes in place and the compilation
will proceed.

Warning:

Found hole ‘_’ with type: w_
Where: ‘w_’ is a rigid type variable bound by
the inferred type of succ' :: w_ -> w_1 -> w_ at foo.hs:4:1
In the type signature for ‘succ’': _ -> _ -> _
Recursive Do

Recursive do notation allows to use to self-reference expressions on both sides of a monadic bind. For instance the following uses lazy evaluation to generate a infinite list. This is sometimes used for instantiating cyclic datatypes inside of a monadic context that need to hold a reference to themselves.

{-# LANGUAGE DoRec #-}

justOnes :: [Int]
justOnes = do
rec xs <- Just (1:xs)
return (map negate xs)

See: Recursive Do Notation

Applicative Do

By default GHC desugars do-notation to use implicit invocations of bind and return.

test :: Monad m => m (a, b, c)
test = do
 a <- f
 b <- g
 c <- h
 return (a, b, c)

Desugars into:

test :: Monad m => m (a, b, c)
test =
f >>= \a ->
g >>= \b ->
h >>= \c ->
 return (a, b, c)

With ApplicativeDo this instead desugars into use of applicative combinators and a laxer Applicative constraint.

test :: Applicative m => m (a, b, c)
test = (,,) <$> f <*> g <*> h

Pattern Guards

Pattern guards are an extension to the pattern matching syntax. Given a <- pattern qualifier, the right hand side is evaluated and matched against the pattern on the left. If the match fails then the whole guard fails and the next
equation is tried. If it succeeds, then the appropriate binding takes place, and
the next qualifier is matched, in the augmented environment.

{-# LANGUAGE PatternGuards #-}

combine env x y
 | Just a <- lookup x env
 , Just b <- lookup y env
 = Just $ a + b
 | otherwise = Nothing

ViewPatterns

View patterns are like pattern guards that can be nested inside of other patterns.
They are a convenient way of pattern-matching against values of algebraic data
types.

{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Safe

lookupDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupDefault k _ (lookup k -> Just s) = s
lookupDefault _ d _ = d

headTup :: (a, [t]) -> [t]
headTup (headMay . snd -> Just n) = [n]
headTup _ = []

headNil :: [a] -> [a]
headNil (headMay -> Just x) = [x]
headNil _ = []

TupleSections

{-# LANGUAGE TupleSections #-}

first :: a -> (a, Bool)
first = (,True)

second :: a -> (Bool, a)
second = (True,)

56
f :: t -> t1 -> t2 -> t3 -> (t, (), t1, (), (), t2, t3)
f = (,(),(),(),,)

MultiWayIf

{-# LANGUAGE MultiWayIf #-}

bmiTell :: Float -> String
bmiTell bmi = if
 | bmi <= 18.5 -> "You're underweight."
 | bmi <= 25.0 -> "You're average weight."
 | bmi <= 30.0 -> "You're overweight."
 | otherwise -> "You're a whale."

EmptyCase

GHC normally requires at least one pattern branch in case statement this restriction can be relaxed with -XEmptyCase. The case statement then immediately yields a Non-exhaustive patterns in case if evaluated.

test = case of

LambdaCase

For case statements, LambdaCase allows the elimination of redundant free variables introduced purely for the case of pattern matching on.

\case
 p1 -> 32
 p2 -> 32
\temp -> case temp of
 p1 -> 32
 p2 -> 32

{-# LANGUAGE LambdaCase #-}

data Exp a
 = Lam a (Exp a)
 | Var a
 | App (Exp a) (Exp a)

example :: Exp a -> a
example = \case
 Lam a b -> a
Var a -> a
App a b -> example a

NumDecimals

NumDecimals allows the use of exponential notation for integral literals that are not necessarily floats. Without it enable any use of expontial notation induces a Fractional class constraint.

1e100 :: Num a => a
1e100 :: Fractional a => a

PackageImports

Package imports allows us to disambiguate hierarchical package names by their respective package key. This is useful in the case where you have to imported packages that expose the same module. In practice most of the common libraries have taken care to avoid conflicts in the namespace and this is not usually a problem in most modern Haskell.

For example we could explicitly ask GHC to resolve that Control.Monad.Error package be drawn from the mtl library.

import qualified "mtl" Control.Monad.Error as Error
import qualified "mtl" Control.Monad.State as State
import qualified "mtl" Control.Monad.Reader as Reader

RecordWildCards

Record wild cards allow us to expand out the names of a record as variables scoped as the labels of the record implicitly. The extension can be used to extract variables names into a scope or to assign to variables in a record drawing, aligning the record’s labels with the variables in scope for the assignment. The syntax introduced is the {...} pattern selector.

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Text

data Example = Example
{ e1 :: Int
, e2 :: Text
, e3 :: Text
} deriving (Show)
-- Extracting from a record using wildcards.
scope :: Example -> (Int, Text, Text)
scope Example {..} = (e1, e2, e3)

-- Assign to a record using wildcards.
assign :: Example
assign = Example {..}
 where
 (e1, e2, e3) = (1, "Kirk", "Picard")

NamedFieldPuns

Provides alternative syntax for accessing record fields in a pattern match.

data D = D {a :: Int, b :: Int}

f :: D -> Int
f D {a, b} = a - b

-- Order doesn’t matter
g :: D -> Int
g D {b, a} = a - b

PatternSynonyms

Suppose we were writing a typechecker, it would be very common to include a
distinct TArr term to ease the telescoping of function signatures, this is what
GHC does in its Core language. Even though technically it could be written in
terms of more basic application of the (->) constructor.

data Type
 = TVar TVar
 | TCon TyCon
 | TApp Type Type
 | TArr Type Type
deriving (Show, Eq, Ord)

With pattern synonyms we can eliminate the extraneous constructor without
losing the convenience of pattern matching on arrow types.

{-# LANGUAGE PatternSynonyms #-}

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

So now we can write an eliminator and constructor for arrow type very naturally.
import Data.List (foldl1')

type Name = String
type TVar = String
type TyCon = String

data Type
 = TVar TVar
 | TCon TyCon
 | TApp Type Type
 deriving (Show, Eq, Ord)

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

tapp :: TyCon -> [Type] -> Type
tapp tcon args = foldl TApp (TCon tcon) args

arr :: [Type] -> Type
arr ts = foldl1' (\t1 t2 -> tapp "(->)" [t1, t2]) ts

elimTArr :: Type -> [Type]
elimTArr (TArr (TArr t1 t2) t3) = t1 : t2 : elimTArr t3
elimTArr (TArr t1 t2) = t1 : elimTArr t2
elimTArr t = [t]

-- (->) a ((->) b a)
-- a -> b -> a

Pattern synonyms can be exported from a module like any other definition by prefixing them with the prefix pattern.

module MyModule
 where

pattern Elt = [a]
 • Pattern Synonyms in GHC 8
DeriveTraversable
DeriveFoldable
DeriveFunctor
DeriveGeneric
DeriveAnyClass

With -XDeriveAnyClass we can derive any class. The deriving logic generates an instance declaration for the type with no explicitly-defined methods. If the typeclass implements a default for each method then this will be well-defined and give rise to an automatic instances.

StaticPointers

DuplicateRecordFields

GHC 8.0 introduced the DuplicateRecordFields extensions which loosens GHC's restriction on records in the same module with identical accessors. The precise type that is being projected into is now deferred to the callsite.

{-# LANGUAGE DuplicateRecordFields #-}

data Person = Person { id :: Int }
data Animal = Animal { id :: Int }
data Vegetable = Vegetable { id :: Int }

test :: (Person, Animal, Vegetable)
test = (Person {id = 1}, Animal {id = 2}, Vegetable {id = 3})

Using just DuplicateRecordFields, projection is still not supported so the following will not work. OverloadedLabels fixes this to some extent.

test :: (Person, Animal, Vegetable)
test = (id (Person 1), id (Animal 2), id (Animal 3))

OverloadedLabels

GHC 8.0 also introduced the OverloadedLabels extension which allows a limited form of polymorphism over labels that share the same

To work with overloaded labels types we need to enable several language extensions to work with promoted strings and multiparam typeclasses that underly it’s implementation.
extract :: IsLabel "id" t => t
exect = #id

{-# LANGUAGE OverloadedLabels #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE ExistentialQuantification #-}

import GHC.Records (HasField(..))
import GHC.OverloadedLabels (IsLabel(..))

data S = MkS { foo :: Int }
data T x y z = forall b . MkT { foo :: y, bar :: b }

instance HasField x r a => IsLabel x (r -> a) where
 fromLabel = getField

main :: IO ()
main = do
 print (#foo (MkS 42))
 print (#foo (MkT True False))

See:
 • OverloadedRecordFields revived

Cpp

The C++ preprocessor is the fallback whenever we really need to separate out logic that has to span multiple versions of GHC and language changes while maintaining backwards compatibility. To dispatch on the version of GHC being used to compile a module.

{-# LANGUAGE CPP #-}

#if (__GLASGOW_HASKELL__ > 710)
 -- Imports for GHC 7.10.x
#else
 -- Imports for other GHC
#endif

To demarcate code based on the operating system compiled on.

{-# LANGUAGE CPP #-}

#ifdef OS_Linux
 -- Linux specific logic
#else
ifdef OS_Win32
 -- Windows specific logic
else
ifdef OS_Mac
 -- Macintosh specific logic
else
 -- Other operating systems
endif
endif
#endif

Or on the version of the base library used.

#if !MIN_VERSION_base(4,6,0)
 -- Base specific logic
#endif

It can also be abused to do terrible things like metaprogramming with strings, but please don’t do this.

Historical Extensions

Several language extensions have either been absorbed into the core language or become deprecated in favor of others. Others are just considered misfeatures.

- Rank2Types - Rank2Types has been subsumed by RankNTypes
- XPolymorphicComponents - Was an implementation detail of higher-rank polymorphism that no longer exists.
- NPlusKPatterns - These were largely considered an ugly edge-case of pattern matching language that was best removed.
- TraditionalRecordSyntax - Traditional record syntax was an extension to the Haskell 98 specification for what we now consider standard record syntax.
- OverlappingInstances - Subsumed by explicit OVERLAPPING pragmas.
- IncoherentInstances - Subsumed by explicit INCOHERENT pragmas.
- NullaryTypeClasses - Subsumed by explicit Multiparameter Typeclasses with no parameters.

Type Classes

Minimal Annotations

In the presence of default implementations of typeclasses methods, there may be several ways to implement a typeclass. For instance Eq is entirely defined by either defining when two values are equal or not equal by implying taking
the negation of the other. We can define equality in terms of non-equality and vice-versa.

class Eq a where
 (==), (/=) :: a -> a -> Bool
 x == y = not (x /= y)
 x /= y = not (x == y)

Before 7.6.1 there was no way to specify what was the “minimal” definition required to implement a typeclass

class Eq a where
 (==), (/=) :: a -> a -> Bool
 x == y = not (x /= y)
 x /= y = not (x == y)

{-# MINIMAL (==) #-}
{-# MINIMAL (=/=) #-}

Minimal pragmas are boolean expressions, with | as logical OR, either definition must be defined). Comma indicates logical AND where both sides both definitions must be defined.

{-# MINIMAL (==) | (=/=) #-} -- Either (==) or (=/=)
{-# MINIMAL (==) , (=/=) #-} -- Both (==) and (=/=)

Compiling the -Wmissing-methods will warn when a instance is defined that does not meet the minimal criterion.

FlexibleInstances

{-# LANGUAGE FlexibleInstances #-}

class MyClass a

-- Without flexible instances, all instance heads must be type variable. The following would be legal.
instance MyClass (Maybe a)

-- With flexible instances, typeclass heads can be arbitrary nested types. The following would be forbidden without it.
instance MyClass (Maybe Int)

FlexibleContexts

{-# LANGUAGE FlexibleContexts #-}

class MyClass a
Without flexible contexts, all contexts must be type variable. The following would be legal.

```haskell
instance (MyClass a) => MyClass (Either a b)
```

With flexible contexts, typeclass contexts can be arbitrary nested types. The following would be forbidden without it.

```haskell
instance (MyClass (Maybe a)) => MyClass (Either a b)
```

OverlappingInstances

Typeclasses are normally globally coherent, there is only ever one instance that can be resolved for a type unambiguously for a type at any call site in the program. There are however extensions to loosen this restriction and perform more manual direction of the instance search.

Overlapping instances loosens the coherent condition (there can be multiple instances) but introduces a criterion that it will resolve to the most specific one.

```haskell
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)

instance MyClass Int b where
  fn = error "b"

instance MyClass a Int where
  fn = error "a"

instance MyClass Int Int where
  fn = error "c"

example :: (Int, Int)
exmaple = fn
```

Historically enabling this on module-level was not the best idea, since generally we define multiple classes in a module only a subset of which may be incoherent. So as of 7.10 we now have the capacity to just annotate instances with the OVERLAPPING and INCOHERENT pragmas.

```haskell
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)
```
instance {-# OVERLAPPING #-} MyClass Int b where
 fn = error "b"

instance {-# OVERLAPPING #-} MyClass a Int where
 fn = error "a"

instance {-# OVERLAPPING #-} MyClass Int Int where
 fn = error "c"

eexample :: (Int, Int)
eexample = fn

IncoherentInstances

Incoherent instance loosens the restriction that there be only one specific instance, will choose one arbitrarily (based on the arbitrary sorting of it’s internal representation) and the resulting program will typecheck. This is generally pretty crazy and usually a sign of poor design.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
 fn :: (a,b)

instance MyClass Int b where
 fn = error "a"

instance MyClass a Int where
 fn = error "b"

example :: (Int, Int)
example = fn

There is also an incoherent instance.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
 fn :: (a,b)

instance {-# INCOHERENT #-} MyClass a Int where
 fn = error "general"
instance {-# INCOHERENT #-} MyClass Int Int where
 fn = error "specific"

example :: (Int, Int)
example = fn

TypeSynonymInstances

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

type IntList = [Int]

class MyClass a

 -- Without type synonym instances, we’re forced to manually expand out type
 -- synonyms in the typeclass head.
instance MyClass [Int]

 -- Without it GHC will do this for us automatically. Type synonyms still need to
 -- be fully applied.
instance MyClass IntList

Laziness

Again, a subject on which much ink has been spilled. There is an ongoing
discussion in the land of Haskell about the compromises between lazy and strict
evaluation, and there are nuanced arguments for having either paradigm be
the default. Haskell takes a hybrid approach and allows strict evaluation when
needed and uses laziness by default. Needless to say, we can always find examples
where strict evaluation exhibits worse behavior than lazy evaluation and vice
versa.

The primary advantage of lazy evaluation in the large is that algorithms that
operate over both unbounded and bounded data structures can inhabit the same
type signatures and be composed without additional need to restructure their
logic or force intermediate computations. Languages that attempt to bolt lazi-
ness on to a strict evaluation model often bifurcate classes of algorithms into
ones that are hand-adjusted to consume unbounded structures and those which
operate over bounded structures. In strict languages mixing and matching be-
tween lazy vs strict processing often necessitates manifesting large intermediate
structures in memory when such composition would “just work” in a lazy lan-
guage.
By virtue of Haskell being the only language to actually explore this point in the
design space to the point of being industrial strength; knowledge about lazy eval-
uation is not widely absorbed into the collective programmer consciousness and
can often be non-intuitive to the novice. This doesn’t reflect on the model itself,
merely on the need for more instruction material and research on optimizing
lazy compilers.

The paradox of Haskell is that it explores so many definably unique ideas (laziness,
purity, typeclasses) that it becomes difficult to separate out the discussion
of any one from the gestalt of the whole implementation.

See:
• Oh My Laziness!
• Reasoning about Laziness
• Lazy Evaluation of Haskell
• More Points For Lazy Evaluation
• How Lazy Evaluation Works in Haskell

Strictness

There are several evaluation models for the lambda calculus:

• Strict - Evaluation is said to be strict if all arguments are evaluated before
 the body of a function.
• Non-strict - Evaluation is non-strict if the arguments are not necessarily
 evaluated before entering the body of a function.

These ideas give rise to several models, Haskell itself use the call-by-need model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Strictness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call-by-value</td>
<td>Strict</td>
<td>arguments evaluated before function entered</td>
</tr>
<tr>
<td>Call-by-name</td>
<td>Non-strict</td>
<td>arguments passed unevaluated</td>
</tr>
<tr>
<td>Call-by-need</td>
<td>Non-strict</td>
<td>arguments passed unevaluated but an expression is only evaluated once (sharing)</td>
</tr>
</tbody>
</table>

Seq and WHNF

A term is said to be in weak head normal-form if the outermost constructor
or lambda cannot be reduced further. A term is said to be in normal form if
it is fully evaluated and all sub-expressions and thunks contained within are
evaluated.

-- In Normal Form

42
(2, "foo")
\x -> x + 1
-- Not in Normal Form
1 + 2
(\x -> x + 1) 2
"foo" ++ "bar"
(i + 1, "foo")

-- In Weak Head Normal Form
(1 + 1, "foo")
\x -> 2 + 2
'f' : ("oo" ++ "bar")

-- Not In Weak Head Normal Form
1 + 1
(\x -> x + 1) 2
"foo" ++ "bar"

In Haskell normal evaluation only occurs at the outer constructor of case-statements in Core. If we pattern match on a list we don’t implicitly force all values in the list. An element in a data structure is only evaluated up to the most outer constructor. For example, to evaluate the length of a list we need only scrutinize the outer Cons constructors without regard for their inner values.

: length [undefined, 1] 2

: head [undefined, 1]
Prelude.undefined

: snd (undefined, 1)
1

: fst (undefined, 1)
Prelude.undefined

For example, in a lazy language the following program terminates even though it contains diverging terms.

ignore :: a -> Int
ignore x = 0

loop :: a
loop = loop

main :: IO ()
main = print $ ignore loop
In a strict language like OCaml (ignoring its suspensions for the moment), the same program diverges.

```ocaml
let ignore x = 0;;
let rec loop a = loop a;;
print_int (ignore (loop ()))
```

In Haskell a thunk is created to stand for an unevaluated computation. Evaluation of a thunk is called forcing the thunk. The result is an update, a referentially transparent effect, which replaces the memory representation of the thunk with the computed value. The fundamental idea is that a thunk is only updated once (although it may be forced simultaneously in a multi-threaded environment) and its resulting value is shared when referenced subsequently.

The command :sprint can be used to introspect the state of unevaluated thunks inside an expression without forcing evaluation. For instance:

```haskell
:sprint a
a = _
:sprint b
b = _
:sprint a
a = 1 : 2 : 3 : 4 : 5 : _
:sprint b
```

While a thunk is being computed its memory representation is replaced with a special form known as blackhole which indicates that computation is ongoing and allows for a short circuit for when a computation might depend on itself to complete. The implementation of this is some of the more subtle details of the GHC runtime.

The seq function introduces an artificial dependence on the evaluation of order of two terms by requiring that the first argument be evaluated to WHNF before the evaluation of the second. The implementation of the seq function is an implementation detail of GHC.

```haskell
seq :: a -> b -> b
```
\`seq\` a =
a \`seq\` b = b

The infamous \texttt{foldl} is well-known to leak space when used carelessly and without several compiler optimizations applied. The strict \texttt{foldl'} variant uses \texttt{seq} to overcome this.

\begin{verbatim}
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' _ z [] = z
foldl' f z (x:xs) = let z' = f z x in z' \`seq\` foldl' f z' xs
\end{verbatim}

In practice, a combination between the strictness analyzer and the inliner on \texttt{-O2} will ensure that the strict variant of \texttt{foldl} is used whenever the function is inlinable at call site so manually using \texttt{foldl'} is most often not required.

Of important note is that GHCi runs without any optimizations applied so the same program that performs poorly in GHCi may not have the same performance characteristics when compiled with GHC.

\section*{Strictness Annotations}

The extension \textbf{BangPatterns} allows an alternative syntax to force arguments to functions to be wrapped in \texttt{seq}. A bang operator on an arguments forces its evaluation to weak head normal form before performing the pattern match. This can be used to keep specific arguments evaluated throughout recursion instead of creating a giant chain of thunks.

\begin{verbatim}
{-# LANGUAGE BangPatterns #-}

sum :: Num a => [a] -> a
sum = go 0
where
 go !acc (x:xs) = go (acc + x) xs
 go acc [] = acc
\end{verbatim}

This is desugared into code effectively equivalent to the following:

\begin{verbatim}
sum :: Num a => [a] -> a
sum = go 0
where
 go acc _ | acc \`seq\` False = undefined
 go acc (x:xs) = go (acc + x) xs
 go acc [] = acc
\end{verbatim}

Function application to \texttt{seq’d} arguments is common enough that it has a special operator.
($!)$:: (a -> b) -> a -> b
f $! x = let !vx = x in f vx

Strict Haskell

As of GHC 8.0 strictness annotations can be applied to all definitions in a module automatically. In previous versions it was necessary to definitions via explicit syntactic annotations at all sites.

StrictData

Enabling StrictData makes constructor fields strict by default on any module it is enabled on.

{-# LANGUAGE StrictData #-}

data Employee = Employee
 { name :: T.Text
 , age :: Int
 }

Is equivalent to:

data Employee = Employee
 { name :: !T.Text
 , age :: !Int
 }

Strict

Strict implies -XStrictData and extends strictness annotations to all arguments of functions.

f x y = x + y

Is equivalent to the following function declaration with explicit bang patterns:

f !x !y = x + y

On a module-level this effectively makes Haskell a call-by-value language with some caveats. All arguments to functions are now explicitly evaluated and all data in constructors within this module are in head normal form by construction. However there are some subtle points to this that are better explained in the language guide.

• Strict Extensions
Deepseq

There are often times when for performance reasons we need to deeply evaluate a data structure to normal form leaving no terms unevaluated. The deepseq library performs this task.

The typeclass `NFData` (Normal Form Data) allows us to seq all elements of a structure across any subtypes which themselves implement NFData.

```haskell
class NFData a where
    rnf :: a -> ()
    rnf a = a `seq` ()

deepseq :: NFData a => a -> b -> a
    ($!!) :: (NFData a) => (a -> b) -> a -> b

instance NFData Int
instance NFData (a -> b)

instance NFData a => NFData (Maybe a) where
    rnf Nothing = ()
    rnf (Just x) = rnf x

instance NFData a => NFData [a] where
    rnf [] = ()
    rnf (x:xs) = rnf x `seq` rnf xs

[i, undefined] `deepseq` ()
-- ()

[i, undefined] `deepseq` ()
-- Prelude.undefined
```

To force a data structure itself to be fully evaluated we share the same argument in both positions of deepseq.

```haskell
force :: NFData a => a
force x = x `deepseq` x
```

Irrefutable Patterns

A lazy pattern doesn’t require a match on the outer constructor, instead it lazily calls the accessors of the values as needed. In the presence of a bottom, we fail at the usage site instead of the outer pattern match.

```haskell
f :: (a, b) -> Int
f (a,b) = const 1 a

g :: (a, b) -> Int
```
Prelude

What to Avoid?

Haskell being a 25 year old language has witnessed several revolutions in the way we structure and compose functional programs. Yet as a result several portions of the Prelude still reflect old schools of thought that simply can’t be removed without breaking significant parts of the ecosystem.

Currently it really only exists in folklore which parts to use and which not to use, although this is a topic that almost all introductory books don’t mention and instead make extensive use of the Prelude for simplicity’s sake.

The short version of the advice on the Prelude is:

- Avoid String.
- Use `fmap` instead of `map`.
- Use Foldable and Traversable instead of the Control.Monad, and Data.List versions of traversals.
- Avoid partial functions like `head` and `read` or use their total variants.
- Avoid exceptions, use `ExceptT` or Either instead.
- Avoid boolean blind functions.

The instances of Foldable for the list type often conflict with the monomorphic versions in the Prelude which are left in for historical reasons. So often times it is desirable to explicitly mask these functions from implicit import and force the use of Foldable and Traversable instead.
Of course often times one wishes only to use the Prelude explicitly and one can explicitly import it qualified and use the pieces as desired without the implicit import of the whole namespace.

```haskell
import qualified Prelude as P
```

What Should be in Base

To get work done you probably need:

- async
- bytestring
- containers
- mtl
- stm
- text
- transformers
- unordered-containers
- vector
- filepath
- directory
- containers
- process
- unix
- deepseq
- optparse-applicative

Custom Preludes

The default Prelude can be disabled in it’s entirety by twiddling the `-XNoImplicitPrelude` flag.

```haskell
{-# LANGUAGE NoImplicitPrelude #-}
```

We are then free to build an equivalent Prelude that is more to our liking. Using module reexporting we can pluck the good parts of the prelude and libraries like `safe` to build up a more industrial focused set of default functions. For example:

```haskell
module Custom (  
    module Exports,  
  ) where

import Data.Int as Exports
import Data.Tuple as Exports
import Data.Maybe as Exports
import Data.String as Exports
import Data.Foldable as Exports
```
import Data.Traversable as Exports

import Control.Monad.Trans.Except as Exports
 (ExceptT(ExceptT), Except, except, runExcept, runExceptT, mapExcept, mapExceptT, withExcept, withExceptT)

The Prelude itself is entirely replicable as well presuming that an entire project is compiled without the implicit Prelude. Several packages have arisen that supply much of the same functionality in a way that appeals to more modern design principles.

- base-prelude
- basic-prelude
- classy-prelude
- Other Preludes

Partial Functions

A partial function is a function which doesn’t terminate and yield a value for all given inputs. Conversely a total function terminates and is always defined for all inputs. As mentioned previously, certain historical parts of the Prelude are full of partial functions.

The difference between partial and total functions is the compiler can’t reason about the runtime safety of partial functions purely from the information specified in the language and as such the proof of safety is left to the user to guarantee. They are safe to use in the case where the user can guarantee that invalid inputs cannot occur, but like any unchecked property its safety or not-safety is going to depend on the diligence of the programmer. This very much goes against the overall philosophy of Haskell and as such they are discouraged when not necessary.

\[
\begin{align*}
\text{head} &:: [a] \rightarrow a \\
\text{read} &:: \text{Read } a \Rightarrow \text{String } \rightarrow a \\
(!!) &:: [a] \rightarrow \text{Int } \rightarrow a
\end{align*}
\]

Safe

The Prelude has total variants of the historical partial functions (i.e. Text.Read.readMaybe) in some cases, but often these are found in the various utility libraries like safe.

The total versions provided fall into three cases:

- **May** - return Nothing when the function is not defined for the inputs
- **Def** - provide a default value when the function is not defined for the inputs
• **Note** - call `error` with a custom error message when the function is not defined for the inputs. This is not safe, but slightly easier to debug!

```haskell
-- Total
headMay :: [a] -> Maybe a
readMay :: Read a => String -> Maybe a
atMay :: [a] -> Int -> Maybe a

-- Total
headDef :: a -> [a] -> a
readDef :: Read a => a -> String -> a
atDef :: a -> [a] -> Int -> a

-- Partial
headNote :: String -> [a] -> a
readNote :: Read a => String -> String -> a
atNote :: String -> [a] -> Int -> a
```

Boolean Blindness

```haskell
data Bool = True | False

isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing = False
```

The problem with the boolean type is that there is effectively no difference between `True` and `False` at the type level. A proposition taking a value to a `Bool` takes any information given and destroys it. To reason about the behavior we have to trace the provenance of the proposition we’re getting the boolean answer from, and this introduces a whole slew of possibilities for misinterpretation. In the worst case, the only way to reason about safe and unsafe use of a function is by trusting that a predicate’s lexical name reflects its provenance!

For instance, testing some proposition over a `Bool` value representing whether the branch can perform the computation safely in the presence of a null is subject to accidental interchange. Consider that in a language like C or Python testing whether a value is null is indistinguishable to the language from testing whether the value is *not null*. Which of these programs encodes safe usage and which segfaults?

```haskell
# This one?
if p(x):
    # use x
elif not p(x):
    # don't use x
```
Or this one?
if p(x):
 # don't use x
elif not p(x):
 # use x

From inspection we can't tell without knowing how p is defined, the compiler
can't distinguish the two either and thus the language won't save us if we happen
to mix them up. Instead of making invalid states unrepresentable we've made
the invalid state indistinguishable from the valid one!

The more desirable practice is to match on terms which explicitly witness the
proposition as a type (often in a sum type) and won't typecheck otherwise.

case x of
 Just a -> use x
 Nothing -> don't use x

-- not ideal
case p x of
 True -> use x
 False -> don't use x

-- not ideal
if p x
 then use x
 else don't use x

To be fair though, many popular languages completely lack the notion of sum
types (the source of many woes in my opinion) and only have product types, so
this type of reasoning sometimes has no direct equivalence for those not familiar
with ML family languages.

In Haskell, the Prelude provides functions like isJust and fromJust both of
which can be used to subvert this kind of reasoning and make it easy to introduce
bugs and should often be avoided.

Foldable / Traversable

If coming from an imperative background retraining one's self to think about
iteration over lists in terms of maps, folds, and scans can be challenging.

Prelude.foldl :: (a -> b -> a) -> a -> [b] -> a
Prelude.foldr :: (a -> b -> b) -> b -> [a] -> b

-- pseudocode
foldr f z [a...] = f a (f b (... (f y z) ...))
foldl f z [a...] = f ... (f (f z a) b) ... y
For a concrete consider the simple arithmetic sequence over the binary operator (+):

```haskell
-- foldr (+) 1 [2..]
(1 + (2 + (3 + (4 + ...))))
```

```haskell
-- foldl (+) 1 [2..]
(((1 + 2) + 3) + 4) + ...
```

Foldable and Traversable are the general interface for all traversals and folds of any data structure which is parameterized over its element type (List, Map, Set, Maybe, ...). These two classes are used everywhere in modern Haskell and are extremely important.

A foldable instance allows us to apply functions to data types of monoidal values that collapse the structure using some logic over `mappend`.

A traversable instance allows us to apply functions to data types that walk the structure left-to-right within an applicative context.

```haskell
class (Functor f, Foldable f) => Traversable f where
  traverse :: Applicative g => (a -> g b) -> f a -> g (f b)
```

```haskell
class Foldable f where
  foldMap :: Monoid m => (a -> m) -> f a -> m
```

The `foldMap` function is extremely general and non-intuitively many of the monomorphic list folds can themselves be written in terms of this single polymorphic function.

`foldMap` takes a function of values to a monoidal quantity, a functor over the values and collapses the functor into the monoid. For instance for the trivial `Sum` monoid:

```haskell
foldMap Sum [1..10]
Sum {getSum = 55}
```

For instance if we wanted to map a list of some abstract element types into a hashtable of elements based on pattern matching we could use it.

```haskell
import Data.Foldable
import qualified Data.Map as Map

data Elt = Elt Int Double | Nil

foo :: [Elt] -> Map.Map Int Double
foo = foldMap go
  where
    go (Elt x y) = Map.singleton x y
    go Nil = Map.empty
```
The full Foldable class (with all default implementations) contains a variety of
derived functions which themselves can be written in terms of `foldMap` and `Endo`.

```haskell
newtype Endo a = Endo {appEndo :: a -> a}

instance Monoid (Endo a) where
  mempty = Endo id
  Endo f `mappend` Endo g = Endo (f . g)

class Foldable t where
  fold :: Monoid m => t m -> m
  foldMap :: Monoid m => (a -> m) -> t a -> m
  foldr :: (a -> b -> b) -> b -> t a -> b
  foldr' :: (a -> b -> b) -> b -> t a -> b
  foldl :: (b -> a -> b) -> b -> t a -> b
  foldl' :: (b -> a -> b) -> b -> t a -> b
  foldr1 :: (a -> a -> a) -> t a -> a
  foldl1 :: (a -> a -> a) -> t a -> a
```

For example:

```haskell
foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z
```

Most of the operations over lists can be generalized in terms of combinations of Foldable and Traversable to derive more general functions that work over all data structures implementing Foldable.

```haskell
Data.Foldable.elem :: (Eq a, Foldable t) => a -> t a -> Bool
Data.Foldable.sum :: (Num a, Foldable t) => t a -> a
Data.Foldable.minimum :: (Ord a, Foldable t) => t a -> a
Data.Traversable.mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)
```

Unfortunately for historical reasons the names exported by foldable quite often conflict with ones defined in the Prelude, either import them qualified or just disable the Prelude. The operations in the Foldable all specialize to the same and behave the same as the ones in Prelude for List types.

```haskell
import Data.Monoid
import Data.Foldable
import Data.Traversable

import Control.Applicative
import Control.Monad.Identity (runIdentity)
import Prelude hiding (mapM_, foldr)
```
data Tree a = Node a [Tree a] deriving (Show)

instance Functor Tree where
 fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

instance Traversable Tree where
 traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Foldable Tree where
 foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

instance Applicative Tree where
 pure x = Node x []
 (<*>) = foldMap join

instance Foldable Tree where
 foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

instance Traversable Tree where
 traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Functor Tree where
 fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

-- Rose Tree

data Tree a = Node a [Tree a] deriving (Show)

instance Functor Tree where
 fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

instance Traversable Tree where
 traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Foldable Tree where
 foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

The instances we defined above can also be automatically derived by GHC using several language extensions. The automatic instances are identical to the hand-written versions above.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}

data Tree a = Node a [Tree a]

See: Typeclassopedia

Corecursion

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
A recursive function consumes data and eventually terminates, a corecursive function generates data and **coterminates**. A corecursive function is said to be **productive** if it can always evaluate more of the resulting value in bounded time.

```haskell
import Data.List

f :: Int -> Maybe (Int, Int)
f 0 = Nothing
f x = Just (x, x-1)

rev :: [Int]
rev = unfoldr f 10

fibs :: [Int]
fibs = unfoldr (\(a,b) -> Just (a,(b,a+b))) (0,1)
```

split

The split package provides a variety of missing functions for splitting list and string types.

```haskell
import Data.List.Split

eexample1 :: [String]
eexample1 = splitOn "." "foo.bar.baz"
-- ["foo","bar","baz"]

eexample2 :: [String]
eexample2 = chunksOf 10 "To be or not to be that is the question."
-- ["To be or n","ot to be t","hat is the"," question."]
```

monad-loops

The monad-loops package provides a variety of missing functions for control logic in monadic contexts.

```haskell
whileM :: Monad m => m Bool -> m a -> m [a]
untilM :: Monad m => m a -> m Bool -> m [a]
iterateUntilM :: Monad m => (a -> Bool) -> (a -> m a) -> a -> m a
whileJust :: Monad m => m (Maybe a) -> (a -> m b) -> m [b]
```
Strings

String

The default String type is broken and should be avoided whenever possible. Unfortunately for historical reasons large portions of GHC and Base depend on String.

The default Haskell string type is implemented as a naive linked list of characters, this is terrible for most purposes but no one knows how to fix it without rewriting large portions of all code that exists and nobody can commit the time to fix it. So it remains broken, likely forever.

\[
\text{type } \text{String} = [\text{Char}]
\]

For more performance sensitive cases there are two libraries for processing textual data: text and bytestring.

- text - Used for handling unicode data.
- bytestring - Used for handling ASCII data that needs to interchanged with C code or network protocols.

For each of these there are two variants for both text and bytestring.

- lazy Lazy text objects are encoded as lazy lists of strict chunks of bytes.
- strict Byte vectors are encoded as strict Word8 arrays of bytes or code points

Giving rise to the four types.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>strict text</td>
<td>Data.Text</td>
</tr>
<tr>
<td>lazy text</td>
<td>Data.Text.Lazy</td>
</tr>
<tr>
<td>strict bytestring</td>
<td>Data.ByteString</td>
</tr>
<tr>
<td>lazy bytestring</td>
<td>Data.ByteString.Lazy</td>
</tr>
</tbody>
</table>

Conversions

Conversions between strings types (from : left column, to : top row) are done with several functions across the bytestring and text libraries. The mapping between text and bytestring is inherently lossy so there is some degree of freedom in choosing the encoding. We’ll just consider utf-8 for simplicity.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data.Text</td>
<td>id</td>
<td>fromStrict</td>
<td>encodeUtf8</td>
<td>encodeUtf8</td>
</tr>
<tr>
<td>Data.Text.Lazy</td>
<td>toStrict</td>
<td>id</td>
<td>encodeUtf8</td>
<td>encodeUtf8</td>
</tr>
<tr>
<td>Data.ByteString</td>
<td>decodeUtf8</td>
<td>decodeUtf8</td>
<td>id</td>
<td>fromStrict</td>
</tr>
<tr>
<td>Data.ByteString.Lazy</td>
<td>decodeUtf8</td>
<td>decodeUtf8</td>
<td>toStrict</td>
<td>id</td>
</tr>
</tbody>
</table>
Overloaded Strings

With the `XOverloadedStrings` extension string literals can be overloaded without the need for explicit packing and can be written as string literals in the Haskell source and overloaded via a typeclass `IsString`. Sometimes this is desirable.

```haskell
class IsString a where
  fromString :: String -> a
```

For instance:

```haskell
: :type "foo"
"foo" :: [Char]

: :set -XOverloadedStrings

: :type "foo"
"foo" :: IsString a => a
```

We can also derive `IsString` for newtypes using `GeneralizedNewtypeDeriving`, although much of the safety of the newtype is then lost if it is interchangeable with other strings.

```haskell
newtype Cat = Cat Text
  deriving (IsString)

fluffy :: Cat
fluffy = "Fluffy"
```

Import Conventions

```haskell
import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
import qualified Data.ByteString.Char8 as C
import qualified Data.ByteString.Lazy.Char8 as CL
import qualified Data.Text.IO as TIO
import qualified Data.Text.Lazy.IO as TLI0
import qualified Data.Text.Encoding as TE
import qualified Data.Text.Lazy.Encoding as TLE
```
Text

A **Text** type is a packed blob of Unicode characters.

```
pack :: String -> Text
unpack :: Text -> String
```

{-- # LANGUAGE OverloadedStrings --}

```
import qualified Data.Text as T

-- From pack
myTStr1 :: T.Text
myTStr1 = T.pack ("foo" :: String)

-- From overloaded string literal.
myTStr2 :: T.Text
myTStr2 = "bar"
```

See: Text

Text.Builder

```
toLazyText :: Builder -> Data.Text.Lazy.Internal.Text
fromLazyText :: Data.Text.Lazy.Internal.Text -> Builder
```

The Text.Builder allows the efficient monoidal construction of lazy Text types without having to go through inefficient forms like String or List types as intermediates.

{-- # LANGUAGE OverloadedStrings --}

```
import Data.Monoid (mconcat, (<>))
import Data.Text.Lazy.Builder (Builder, toLazyText)
import qualified Data.Text.Lazy.IO as L

beer :: Int -> Builder
beer n = decimal n <> " bottles of beer on the wall.\n"

wall :: Builder
wall = mconcat $ fmap beer [1..1000]

main :: IO ()
main = L.putStrLn $ toLazyText wall
```
ByteString

ByteStrings are arrays of unboxed characters with either strict or lazy evaluation.

pack :: String -> ByteString
unpack :: ByteString -> String

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.ByteString as S
import qualified Data.ByteString.Char8 as S8

-- From pack
bstr1 :: S.ByteString
bstr1 = S.pack ("foo" :: String)

-- From overloaded string literal.
bstr2 :: S.ByteString
bstr2 = "bar"

See:

- Bytestring: Bits and Pieces
- ByteString

Printf

Haskell also has a variadic printf function in the style of C.

import Data.Text
import Text.Printf

a :: Int
a = 3

b :: Double
b = 3.14159

c :: String
c = "haskell"

example :: String
example = printf "(%i, %f, %s)" a b c

-- "(3, 3.14159, haskell)"
Overloaded Lists

It is ubiquitous for data structure libraries to expose `toList` and `fromList` functions to construct various structures out of lists. As of GHC 7.8 we now have the ability to overload the list syntax in the surface language with a typeclass `IsList`.

```haskell
class IsList l where
  type Item l
  fromList :: [Item l] -> l
  toList :: l -> [Item l]

instance IsList [a] where
  type Item [a] = a
  fromList = id
  toList = id

{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeFamilies #-}

import qualified Data.Map as Map
import GHC.Exts (IsList(..))

instance (Ord k) => IsList (Map.Map k v) where
  type Item (Map.Map k v) = (k,v)
  fromList = Map.fromList
  toList = Map.toList

example1 :: Map.Map String Int
example1 = ["a", 1], ["b", 2]]
```

String Conversions

Playing “type-tetris” to convert between Strings explicitly can be frustrating, fortunately there are several packages that automate the conversion using typeclasses to automatically convert between any two common string representations automatically. We can then write generic comparison and concatenation operators that automatically convert types of operands to a like form.

```haskell
{-# LANGUAGE OverloadedStrings #-}

import Data.String.Conv

import qualified Data.Text as T
```
import qualified Data.Text.Lazy.IO as TL
import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as BL

import Data.Monoid

a :: String
a = "Gödel"

b :: BL.ByteString
b = "Einstein"

c :: T.Text
c = "Feynmann"

d :: B.ByteString
d = "Schrödinger"

-- Compare unlike strings
(==~) :: (Eq a, StringConv b a) => a -> b -> Bool
(==~) a b = a == toS b

-- Concat unlike strings
(<>~) :: (Monoid a, StringConv b a) => a -> b -> a
(<>~) a b = a <> toS b

main :: IO ()
main = do
 putStrLn (toS a)
 TL.putStrLn (toS b)
 print (a ==~ b)
 print (c ==~ d)
 print (c ==~ c)
 print (b <>~ c)

Applicatives

Like monads Applicatives are an abstract structure for a wide class of computations that sit between functors and monads in terms of generality.

pure :: Applicative f => a -> f a
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

88
As of GHC 7.6, Applicative is defined as:

```haskell
class Functor f => Applicative f where
  pure :: a -> f a
  (<>*) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap
```

With the following laws:

- `pure id <*> v = v`
- `pure f <*> pure x = pure (f x)`
- `u <*> pure y = pure ($ y) <*> u`
- `u <*> (v <*> w) = pure (.) <*> u <*> v <*> w`

As an example, consider the instance for Maybe:

```haskell
instance Applicative Maybe where
  pure = Just
  Nothing <*> _ = Nothing
  _ <*> Nothing = Nothing
  Just f <*> Just x = Just (f x)
```

As a rule of thumb, whenever we would use `m >>= return . f` what we probably want is an applicative functor, and not a monad.

```haskell
import Network.HTTP
import Control.Applicative ((<$>),(<>*))

example1 :: Maybe Integer
example1 = (+) <$> m1 <*> m2
  where
    m1 = Just 3
    m2 = Nothing
    -- Nothing

example2 :: [(Int, Int, Int)]
example2 = (,,) <$> m1 <*> m2 <*> m3
  where
    m1 = [1,2]
    m2 = [10,20]
    m3 = [100,200]
    -- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

example3 :: IO String
example3 = (++ <$> fetch1 <*> fetch2
  where
    fetch1 = simpleHTTP (getRequest "http://www.fpcomplete.com/") >>= getResponseBody
    fetch2 = simpleHTTP (getRequest "http://www.haskell.org/") >>= getResponseBody
```

89
The pattern $f <*> a <*> b ...$ shows up so frequently that there are a family of functions to lift applicatives of a fixed number arguments. This pattern also shows up frequently with monads (liftM, liftM2, liftM3).

```haskell
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c
```

Applicative also has functions <* and *> that sequence applicative actions while discarding the value of one of the arguments. The operator *> discards the left while <*> discards the right. For example in a monadic parser combinator library the *> would parse with first parser argument but return the second.

The Applicative functions <$> and <*> are generalized by liftM and ap for monads.

```haskell
import Control.Monad
import Control.Applicative

data C a b = C a b

mnd :: Monad m => m a -> m b -> m (C a b)
mnd a b = C 'liftM' a 'ap' b

apl :: Applicative f => f a -> f b -> f (C a b)
apl a b = C <$> a <*> b
```

See: Applicative Programming with Effects

Alternative

Alternative is an extension of the Applicative class with a zero element and an associative binary operation respecting the zero.

```haskell
class Applicative f => Alternative f where
  -- | The identity of '<|>'
  empty :: f a
  -- | An associative binary operation
  <|> :: f a -> f a -> f a
  -- | One or more.
  some :: f a -> f [a]
  -- | Zero or more.
  many :: f a -> f [a]
```
optional :: Alternative f => f a -> f (Maybe a)

instance Alternative Maybe where
 empty = Nothing
 Nothing <|> r = r
 l <|> _ = l

instance Alternative [] where
 empty = []
 (<|>) = (++)

: foldl1 (<|>) [Nothing, Just 5, Just 3]
 Just 5

These instances show up very frequently in parsers where the alternative operator can model alternative parse branches.

Arrows

A category is an algebraic structure that includes a notion of an identity and a composition operation that is associative and preserves identities.

class Category cat where
 id :: cat a a
 (.) :: cat b c -> cat a b -> cat a c

instance Category (->) where
 id = Prelude.id
 (.) = (Prelude..)

(<<<) :: Category cat => cat b c -> cat a b -> cat a c
(<<<) = (.)

(>>>) :: Category cat => cat a b -> cat b c -> cat a c
f >>> g = g . f

Arrows are an extension of categories with the notion of products.

class Category a => Arrow a where
 arr :: (b -> c) -> a b c
 first :: a b c -> a (b,d) (c,d)
 second :: a b c -> a (d,b) (d,c)
 (***) :: a b c -> a b' c' -> a (b,b') (c,c')
 (&&&) :: a b c -> a b c' -> a b (c,c')

The canonical example is for functions.

instance Arrow (->) where
 arr f = f
 first f = f *** id
second f = id *** f
(*** f g) (x,y) = (f x, g y)

In this form functions of multiple arguments can be threaded around using
the arrow combinators in a much more pointfree form. For instance a histogram
function has a nice one-liner.

import Data.List (group, sort)

histogram :: Ord a => [a] -> [(a, Int)]
histogram = map (head & & & length) . group . sort

: histogram "Hello world"
[(' ',1),('H',1),('d',1),('e',1),('l',3),('o',2),('r',1),('w',1)]

Arrow notation

GHC has built-in syntax for composing arrows using proc notation. The follow-
ing are equivalent after desugaring:

{-# LANGUAGE Arrows #-}

addA :: Arrow a => a b Int -> a b Int -> a b Int
addA f g = proc x -> do
 y <- f x
 z <- g x
 returnA y + z

addA f g = arr (\ x -> (x, x)) >>>
 first f >>> arr (\ (y, x) -> (x, y)) >>>
 first g >>> arr (\ (z, y) -> y + z)

addA f g = f & & & g >>> arr (\ (y, z) -> y + z)

In practice this notation is not often used and may become deprecated in the
future.

See: Arrow Notation

Bifunctors

Bifunctors are a generalization of functors to include types parameterized by
two parameters and include two map functions for each parameter.

class Bifunctor p where
 bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
 first :: (a -> b) -> p a c -> p b c
 second :: (b -> c) -> p a b -> p a c

The bifunctor laws are a natural generalization of the usual functor. Namely
they respect identities and composition in the usual way:
bimap id id id
first id id
second id id
bimap f g first f . second g

The canonical example is for 2-tuples.

: first (+1) (1,2)
(2,2)
: second (+1) (1,2)
(1,3)
: bimap (+1) (+1) (1,2)
(2,3)

: first (+1) (Left 3)
Left 4
: second (+1) (Left 3)
Left 3
: second (+1) (Right 3)
Right 4

Polyvariadic Functions

One surprising application of typeclasses is the ability to construct functions which take an arbitrary number of arguments by defining instances over function types. The arguments may be of arbitrary type, but the resulting collected arguments must either converted into a single type or unpacked into a sum type.

{-# LANGUAGE FlexibleInstances #-}

class Arg a where
collect' :: [String] -> a

-- extract to IO
instance Arg (IO ()) where
collect' acc = mapM_ putStrLn acc

-- extract to [String]
instance Arg [String] where
collect' acc = acc

instance (Show a, Arg r) => Arg (a -> r) where
collect' acc = \x -> collect' (acc ++ [show x])

collect :: Arg t => t
collect = collect' []

eexample1 :: [String]
eexample1 = collect 'a' 2 3.0

eexample2 :: IO()
eexample2 = collect () "foo" [1,2,3]

See: Polyvariadic functions

Error Handling

Control.Exception

The low-level (and most dangerous) way to handle errors is to use the throw and catch functions which allow us to throw extensible exceptions in pure code but catch the resulting exception within IO. Of specific note is that return value of the throw inhabits all types. There’s no reason to use this for custom code that doesn’t use low-level system operations.

throw :: Exception e => e -> a
catch :: Exception e => IO a -> (e -> IO a) -> IO a
try :: Exception e => IO a -> IO (Either e a)
evaluate :: a -> IO a

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Exception

data MyException = MyException
 deriving (Show, Typeable)

instance Exception MyException

evil :: [Int]
evil = [throw MyException]

eexample1 :: Int
eexample1 = head evil

eexample2 :: Int
eexample2 = length evil

main :: IO()
main = do
a <- try (evaluate example1) :: IO (Either MyException Int)
print a

b <- try (return example2) :: IO (Either MyException Int)
print b

Because a value will not be evaluated unless needed, if one desires to know for sure that an exception is either caught or not it can be deeply forced into
head normal form before invoking catch. The strictCatch is not provided by standard library but has a simple implementation in terms of deepseq.

```
strictCatch :: (NFData a, Exception e) => IO a -> (e -> IO a) -> IO a
strictCatch = catch . (toNF =<<)
```

Exceptions

The problem with the previous approach is having to rely on GHC’s asynchronous exception handling inside of IO to handle basic operations. The exceptions provides the same API as Control.Exception but loosens the dependency on IO.

```
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Monad.Catch
import Control.Monad.Identity

data MyException = MyException
    deriving (Show, Typeable)

instance Exception MyException

example :: MonadCatch m => Int -> Int -> m Int
example x y | y == 0 = throwM MyException
             | otherwise = return $ x `div` y

pure :: MonadCatch m => m (Either MyException Int)
pure = do
    a <- try (example 1 2)
    b <- try (example 1 0)
    return (a >>= b)

See: exceptions

95
ExceptT

As of mtl 2.2 or higher, the ErrorT class has been replaced by the ExceptT. At transformers level.

```haskell
newtype ExceptT e m a = ExceptT (m (Either e a))

runExceptT :: ExceptT e m a -> m (Either e a)
runExceptT (ExceptT m) = m

instance (Monad m) => Monad (ExceptT e m) where
 return a = ExceptT $ return (Right a)
 m >>= k = ExceptT $ do
 a <- runExceptT m
 case a of
 Left e -> return (Left e)
 Right x -> runExceptT (k x)
 fail = ExceptT . fail

throwE :: (Monad m) => e -> ExceptT e m a
throwE = ExceptT . return . Left

catchE :: (Monad m) =>
 (ExceptT e' m a)
 -> (e -> ExceptT e' m a)
 -> ExceptT e' m a
m `catchE` h = ExceptT $ do
 a <- runExceptT m
 case a of
 Left l -> runExceptT (h l)
 Right r -> return (Right r)
```

Using mtl:

```haskell
instance MonadTrans (ExceptT e) where
 lift = ExceptT . liftM Right

class (Monad m) => MonadError e m | m -> e where
 throwError :: e -> m a
 catchError :: m a -> (e -> m a) -> m a

instance MonadError IOException IO where
 throwError = ioError
 catchError = catch

instance MonadError e (Either e) where
```

96
throwError = Left
Left l `catchError` h = h l
Right r `catchError` _ = Right r

See:
- Control.Monad.Except

**spoon**

Sometimes you’ll be forced to deal with seemingly pure functions that can throw up at any point. There are many functions in the standard library like this, and many more on Hackage. You’d like to be handle this logic purely as if it were returning a proper `Maybe a` but to catch the logic you’d need to install a `IO` handler inside `IO` to catch it. Spoon allows us to safely (and “purely”, although it uses a referentially transparent invocation of `unsafePerformIO`) to catch these exceptions and put them in `Maybe` where they belong.

The `spoon` function evaluates its argument to head normal form, while `teaspoon` evaluates to weak head normal form.

```haskell
import Control.Spoon

goBoom :: Int -> Int -> Int
goBoom x y = x `div` y

-- evaluate to normal form
test1 :: Maybe [Int]
test1 = spoon [1, 2, undefined]

-- evaluate to weak head normal form
test2 :: Maybe [Int]
test2 = teaspoon [1, 2, undefined]

main :: IO ()
main = do
 maybe (putStrLn "Nothing") (print . length) test1
 maybe (putStrLn "Nothing") (print . length) test2

See:
- Spoon
```
Advanced Monads

Function Monad

If one writes Haskell long enough one might eventually encounter the curious beast that is the \((\text{->}) \, r\) monad instance. It generally tends to be non-intuitive to work with, but is quite simple when one considers it as an unwrapped Reader monad.

```haskell
instance Functor ((->) r) where
 fmap = (.)

instance Monad ((->) r) where
 return = const
 f >>= k = \r -> k (f r) r
```

This just uses a prefix form of the arrow type operator.

```haskell
import Control.Monad

id' :: (->) a a
id' = id

const' :: (->) a ((->) b a)
const' = const

-- Monad m => a -> m a
fret :: a -> b -> a
fret = return

-- Monad m => m a -> (a -> m b) -> m b
fbind :: (r -> a) -> (a -> (r -> b)) -> (r -> b)
fbind f k = f >>= k

-- Monad m => m (m a) -> m a
fjoin :: (r -> (r -> a)) -> (r -> a)
fjoin = join

fid :: a -> a
fid = const >>= id

-- Functor f => (a -> b) -> f a -> f b
fcompose :: (a -> b) -> (r -> a) -> (r -> b)
fcompose = (.)

-- pseudocode

type Reader r = (->) r
```
instance Monad (Reader r) where
  return a = \_ -> a
  f >>= k = \r -> k (f r) r

ask' :: r -> r
ask' = id

asks' :: (r -> a) -> (r -> a)
asks' f = id . f

runReader' :: (r -> a) -> r -> a
runReader' = id

RWS Monad

The RWS monad combines the functionality of the three monads discussed above, the Reader, Writer, and State. There is also a RWST transformer.

runReader :: Reader r a -> r -> a
runWriter :: Writer w a -> (a, w)
runState :: State s a -> s -> (a, s)

These three eval functions are now combined into the following functions:

runRWS :: RWS r w s a -> r -> s -> (a, s, w)
execRWS :: RWS r w s a -> r -> s -> (s, w)
evalRWS :: RWS r w s a -> r -> s -> (a, w)

import Control.Monad.RWS

type R = Int
type W = [Int]
type S = Int

computation :: RWS R W S ()
computation = do
  e <- ask
  a <- get
  let b = a + e
  put b
  tell [b]

example = runRWS computation 2 3

The usual caveat about Writer laziness also applies to RWS.
Cont

runCont :: Cont r a -> (a -> r) -> r

callCC :: MonadCont m => ((a -> m b) -> m a) -> m a

cont :: ((a -> r) -> r) -> Cont r a

In continuation passing style, composite computations are built up from sequences of nested computations which are terminated by a final continuation which yields the result of the full computation by passing a function into the continuation chain.

add :: Int -> Int -> Int
add x y = x + y

add :: Int -> Int -> (Int -> r) -> r
add x y k = k (x + y)

import Control.Monad
import Control.Monad.Cont

add :: Int -> Int -> Cont k Int
add x y = return $ x + y

mult :: Int -> Int -> Cont k Int
mult x y = return $ x * y

contt :: ContT () IO ()
contt = do
  k <- do
    callCC $ \exit -> do
      lift $ putStrLn "Entry"
      exit $ \_ -> do
        putStrLn "Exit"
        lift $ putStrLn "Inside"
        lift $ k ()

callcc :: Cont String Integer

callcc = do
  a <- return 1
  b <- callCC ($\k -> k 2)
  return $ a+b

ex1 :: IO ()
ex1 = print $ runCont (f >>= g) id
  where
    f = add 1 2
    g = mult 3
-- 9

ex2 :: IO ()
ex2 = print $ runCont callcc show
  -- "3"

ex3 :: IO ()
ex3 = runContT contt print
  -- Entry
  -- Inside
  -- Exit

main :: IO ()
main = do
  ex1
  ex2
  ex3

newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }

instance Monad (Cont r) where
  return a = Cont $ \k -> k a
  (Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)

class (Monad m) => MonadCont m where
callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (Cont r) where
  callCC f = Cont $ \k -> runCont (f (\a -> Cont $ \_ -> k a)) k
  • Wikibooks: Continuation Passing Style
  • MonadCont Under the Hood

MonadPlus

Choice and failure.

class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a

instance MonadPlus [] where
  mzero = []
  mplus = (++)

instance MonadPlus Maybe where
  mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` _ys = xs

MonadPlus forms a monoid with
mzero `mplus` a = a
a `mplus` mzero = a
(a `mplus` b) `mplus` c = a `mplus` (b `mplus` c)

when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()

guard :: MonadPlus m => Bool -> m ()
guard True = return ()
guard False = mzero

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

import Safe
import Control.Monad

list1 :: [(Int,Int)]
list1 = [(a,b) | a <- [1..25], b <- [1..25], a < b]

list2 :: [(Int,Int)]
list2 = do
  a <- [1..25]
b <- [1..25]
guard (a < b)
return $ (a,b)

maybe1 :: String -> String -> Maybe Double
maybe1 a b = do
  a' <- readMay a
  b' <- readMay b
  guard (b' /= 0.0)
  return $ a'/b'

maybe2 :: Maybe Int
maybe2 = msum [Nothing, Nothing, Just 3, Just 4]

import Control.Monad

range :: MonadPlus m => [a] -> m a
range [] = mzero
range (x:xs) = range xs `mplus` return x
pyth :: Integer -> [(Integer,Integer,Integer)]
pyth n = do
  x <- range [1..n]
  y <- range [1..n]
  z <- range [1..n]
  if x*x + y*y == z*z then return (x,y,z) else mzero

main :: IO ()
main = print $ pyth 15
{-
  [ ( 12 , 9 , 15 )
  , ( 12 , 5 , 13 )
  , ( 9 , 12 , 15 )
  , ( 8 , 6 , 10 )
  , ( 6 , 8 , 10 )
  , ( 5 , 12 , 13 )
  , ( 4 , 3 , 5 )
  , ( 3 , 4 , 5 )
  ]
-}

MonadFix

The fixed point of a monadic computation. mfix f executes the action f only once, with the eventual output fed back as the input.

fix :: (a -> a) -> a
fix f = let x = f x in x

mfix :: (a -> m a) -> m a
class Monad m => MonadFix m where
  mfix :: (a -> m a) -> m a

instance MonadFix Maybe where
  mfix f = do a = f (unJust a) in a
    where unJust (Just x) = x
          unJust Nothing = error "mfix Maybe: Nothing"

The regular do-notation can also be extended with -XRecursiveDo to accommodate recursive monadic bindings.
{-# LANGUAGE RecursiveDo #-}

import Control.Applicative
import Control.Monad.Fix

103
stream1 :: Maybe [Int]
stream1 = do
  rec xs <- Just (1:xs)
  return (map negate xs)

stream2 :: Maybe [Int]
stream2 = mfix $ \xs -> do
  xs' <- Just (1:xs)
  return (map negate xs')

ST Monad

The ST monad models “threads” of stateful computations which can manipulate mutable references but are restricted to only return pure values when evaluated and are statically confined to the ST monad of a s thread.

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

import Data.STRef
import Control.Monad
import Control.Monad.ST
import Control.Monad.State.Strict

data1 :: Int
data1 = runST $ do
  x <- newSTRef 0

  forM_ [1..1000] $ \j -> do
    writeSTRef x j

  readSTRef x

data2 :: Int
data2 = runST $ do
  count <- newSTRef 0
  replicateM_ (10^6) $ modifySTRef' count (+1)
  readSTRef count

data3 :: Int
data3 = flip evalState 0 $ do
  replicateM_ (10^6) $ modify' (+1)
  get
modify' :: MonadState a m => (a -> a) -> m ()
modify' f = get >>= (\x -> put $! f x)

Using the ST monad we can create a class of efficient purely functional data structures that use mutable references in a referentially transparent way.

Free Monads

Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a
liftF :: (Functor f, MonadFree f m) => f a -> m a
retract :: Monad f => Free f a -> f a

Free monads are monads which instead of having a join operation that combines computations, instead forms composite computations from application of a functor.

join :: Monad m => m (m a) -> m a
wrap :: MonadFree f m => f (m a) -> m a

One of the best examples is the Partiality monad which models computations which can diverge. Haskell allows unbounded recursion, but for example we can create a free monad from the Maybe functor which can be used to fix the call-depth of, for example the Ackermann function.

import Control.Monad.Fix
import Control.Monad.Free

type Partiality a = Free Maybe a

-- Non-termination.
never :: Partiality a
never = fix (Free . Just)

fromMaybe :: Maybe a -> Partiality a
fromMaybe (Just x) = Pure x
fromMaybe Nothing = Free Nothing

runPartiality :: Int -> Partiality a -> Maybe a
runPartiality 0 _ = Nothing
runPartiality _ (Pure a) = Just a
runPartiality _ (Free Nothing) = Nothing
runPartiality n (Free (Just a)) = runPartiality (n-1) a

ack :: Int -> Int -> Partiality Int
ack 0 n = Pure $ n + 1
ack m 0 = Free $ Just $ ack (m-1) 1
ack m n = Free $ Just $ ack m (n-1) >>= ack (m-1)

main :: IO ()
main = do
  let diverge = never :: Partiality ()
  print $ runPartiality 1000 diverge
  print $ runPartiality 1000 (ack 3 4)
  print $ runPartiality 5500 (ack 3 4)

The other common use for free monads is to build embedded domain-specific languages to describe computations. We can model a subset of the IO monad by building up a pure description of the computation inside of the IOFree monad and then using the free monad to encode the translation to an effectful IO computation.

{-# LANGUAGE DeriveFunctor #-}

import System.Exit
import Control.Monad.Free

data Interaction x
  = Puts String x
  | Gets (Char -> x)
  | Exit
  deriving Functor

type IOFree a = Free Interaction a

puts :: String -> IOFree ()
puts s = liftF $ Puts s ()

get :: IOFree Char
get = liftF $ Gets id

exit :: IOFree r
exit = liftF Exit

gets :: IOFree String
gets = do
  c <- get
  if c == '\n'
  then return ""
  else gets >>= \line -> return (c : line)

-- Collapse our IOFree DSL into IO monad actions.
interp :: IOFree a -> IO a
interp (Pure r) = return r
 interp (Free x) = case x of
   Puts s t -> putStrLn s >> interp t
   Gets f -> getChar >>= interp . f
   Exit -> exitSuccess

 echo :: IOFree ()
echo = do
  puts "Enter your name:"
  str <- gets
  putStrLn str
  putStrLn if length str > 10
   then putStrLn "You have a long name."
   else putStrLn "You have a short name."
  exit

 main :: IO ()
main = interp echo

An implementation such as the one found in free might look like the following:

{-# LANGUAGE MultiParamTypeClasses #-}

import Control.Applicative

data Free f a
  = Pure a
  | Free (f (Free f a))

instance Functor f => Monad (Free f) where
  return a = Pure a
  Pure a >>= f = f a
  Free f >>= g = Free (fmap >>= g) f

class Monad m => MonadFree f m where
  wrap :: f (m a) -> m a

  liftF :: (Functor f, MonadFree f m) => f a -> m a
  liftF = wrap . fmap return

  iter :: Functor f => (f a -> a) -> Free f a -> a
  iter _ (Pure a) = a
  iter phi (Free m) = phi (iter phi <$> m)

  retract :: Monad f => Free f a -> f a
  retract (Pure a) = return a
  retract (Free as) = as >>= retract
Indexed Monads

Indexed monads are a generalisation of monads that adds an additional type parameter to the class that carries information about the computation or structure of the monadic implementation.

class IxMonad md where
  return :: a -> md i i a
  (>>=) :: md i m a -> (a -> md m o b) -> md i o b

The canonical use-case is a variant of the vanilla State which allows type-changing on the state for intermediate steps inside of the monad. This indeed turns out to be very useful for handling a class of problems involving resource management since the extra index parameter gives us space to statically enforce the sequence of monadic actions by allowing and restricting certain state transitions on the index parameter at compile-time.

To make this more usable we’ll use the somewhat esoteric -XRebindableSyntax allowing us to overload the do-notation and if-then-else syntax by providing alternative definitions local to the module.

{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Data.IORef
import Data.Char
import Prelude hiding (fmap, (>>=), (>>), return)
import Control.Applicative

newtype IState i o a = IState { runIState :: i -> (a, o) }

evalIState :: IState i o a -> i -> a
  evalIState st i = fst $ runIState st i

execIState :: IState i o a -> i -> o
  execIState st i = snd $ runIState st i

ifThenElse :: Bool -> a -> a -> a
  ifThenElse b i j = case b of
    True -> i
    False -> j
return :: a -> IState s s a
return a = IState $ \s -> (a, s)

fmap :: (a -> b) -> IState i o a -> IState i o b
fmap f v = IState $ \i -> let (a, o) = runIState v i
    in (f a, o)

join :: IState i m (IState m o a) -> IState i o a
join v = IState $ \i -> let (w, m) = runIState v i
    in runIState w m

(>>=) :: IState i m a -> (a -> IState m o b) -> IState i o b
v >>= f = IState $ \i -> let (a, m) = runIState v i
    in runIState (f a) m

get :: IState s s s
get = IState $ \s -> (s, s)

gets :: (a -> o) -> IState a o a
gets f = IState $ \s -> (s, f s)

put :: o -> IState i o ()
put o = IState $ \_ -> (() , o)

modify :: (i -> o) -> IState i o ()
modify f = IState $ \i -> (() , f i)

data Locked = Locked
data Unlocked = Unlocked

type Stateful a = IState a Unlocked a

acquire :: IState i Locked ()
acquire = put Locked

-- Can only release the lock if it's held, try release the lock
-- that's not held is a now a type error.
release :: IState Locked Unlocked ()
release = put Unlocked

-- Statically forbids improper handling of resources.
lockExample :: Stateful a
lockExample = do
    ptr <- get :: IState a a a
    acquire :: IState a Locked ()
    -- ...
    release :: IState Locked Unlocked ()
    return ptr

    -- Couldn't match type `Locked' with `Unlocked'
    -- In a stmt of a 'do' block: return ptr

failure1 :: Stateful a
failure1 = do
    ptr <- get
    acquire
    return ptr -- didn't release

    -- Couldn't match type `a' with `Locked'
    -- In a stmt of a 'do' block: release

failure2 :: Stateful a
failure2 = do
    ptr <- get
    release -- didn't acquire
    return ptr

    -- Evaluate the resulting state, statically ensuring that the
    -- lock is released when finished.

evalReleased :: IState i Unlocked a -> i -> a
evalReleased f st = evalIState f st

evalReleased <$> pure lockExample <*> newIORef 0

example :: IO (IORef Integer)
example = evalReleased <$> pure lockExample <*> newIORef 0

See: Fun with Indexed monads

lifted-base

The default prelude predates a lot of the work on monad transformers and as such many of the common functions for handling errors and interacting with IO
are bound strictly to the IO monad and not to functions implementing stacks
on top of IO or ST. The lifted-base provides generic control operations such as
catch can be lifted from IO or any other base monad.

monad-base

Monad base provides an abstraction over liftIO and other functions to explicit-
ly lift into a “privileged” layer of the transformer stack. It’s implemented a

110
multiparameter typeclass with the “base” monad as the parameter b.

-- | Lift a computation from the base monad
class (Applicative b, Applicative m, Monad b, Monad m)
  => MonadBase b m | m -> b where
  liftBase  b a -> m a

monad-control

Monad control builds on top of monad-base to extended lifting operation to
control operations like catch and bracket can be written generically in terms
of any transformer with a base layer supporting these operations. Generic op-
erations can then be expressed in terms of a MonadBaseControl and written
in terms of the combinator control which handles the bracket and automatic
handler lifting.

control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a

For example the function catch provided by Control.Exception is normally
locked into IO.

catch :: Exception e => IO a -> (e -> IO a) -> IO a

By composing it in terms of control we can construct a generic version which
automatically lifts inside of any combination of the usual transformer stacks
that has MonadBaseControl instance.

catch  :: (MonadBaseControl IO m, Exception e)
  => m a     -- ^ Computation
  -> (e -> m a) -- ^ Handler
  -> m a
  catch a handler = control $ \runInIO ->
    E.catch (runInIO a)
      (\e -> runInIO $ handler e)

Quantification

This is an advanced section, and is not typically necessary to write Haskell.

Universal Quantification

Universal quantification the primary mechanism of encoding polymorphism in
Haskell. The essence of universal quantification is that we can express functions
which operate the same way for a set of types and whose function behavior is
entirely determined only by the behavior of all types in this span.
{-# LANGUAGE ExplicitForAll #-}

-- a. [a]
example1 :: forall a. [a]
example1 = []

-- a. [a]
example2 :: forall a. [a]
example2 = [undefined]

-- a. b. (a → b) → [a] → [b]
map' :: forall a. forall b. (a → b) → [a] → [b]
map' f = foldr ((::) . f) []

-- a. [a] → [a]
reverse' :: forall a. [a] → [a]
reverse' = foldl (flip (:)) []

Normally quantifiers are omitted in type signatures since in Haskell’s vanilla surface language it is unambiguous to assume to that free type variables are universally quantified.

Free theorems

A universally quantified type-variable actually implies quite a few rather deep properties about the implementation of a function that can be deduced from its type signature. For instance the identity function in Haskell is guaranteed to only have one implementation since the only information that the information that can present in the body

id :: forall a. a → a
id x = x

fmap :: Functor f ⇒ (a → b) → f a → f b

The free theorem of fmap:
forall f g. fmap f . fmap g = fmap (f . g)

See: Theorems for Free

Type Systems

Hindley-Milner type system

The Hindley-Milner type system is historically important as one of the first typed lambda calculi that admitted both polymorphism and a variety of inference techniques that could always decide principal types.
In an implementation, the function \texttt{generalize} converts all type variables within the type into polymorphic type variables yielding a type scheme. The function \texttt{instantiate} maps a scheme to a type, but with any polymorphic variables converted into unbound type variables.

**Rank-N Types**

System-F is the type system that underlies Haskell. System-F subsumes the HM type system in the sense that every type expressible in HM can be expressed within System-F. System-F is sometimes referred to in texts as the \textit{Girard-Reynolds polymorphic lambda calculus} or \textit{second-order lambda calculus}.

An example with equivalents of GHC Core in comments:

`id`	`id :: forall t. t -> t`
`id`	`id = \lambda t. x :: t -> x`
`tr`	`tr :: forall a. b. a -> b -> a`
`fl`	`fl :: forall a. b. a -> b -> b`
\[ fl = \lambda (a) \lambda (b) (x :: a) (y :: b) \to y \]
\[ nil = \lambda a. \lambda b. \lambda z :: b. f (a \to b \to b). z \]
\[ cons = \lambda (a). \lambda a. \lambda x :: a. \lambda xs :: (b. b \to (a \to b \to b) \to b). \lambda z :: b. \lambda f :: (a \to b \to b). f x (xs \_ b \_ z f) \]

Normally when Haskell’s typechecker infers a type signature it places all quantifiers of type variables at the outermost position such that no quantifiers appear within the body of the type expression, called the prenex restriction. This restricts an entire class of type signatures that would otherwise be expressible within System-F, but has the benefit of making inference much easier.

\texttt{-XRankNTypes} loosens the prenex restriction such that we may explicitly place quantifiers within the body of the type. The bad news is that the general problem of inference in this relaxed system is undecidable in general, so we’re required to explicitly annotate functions which use RankNTypes or they are otherwise inferred as rank 1 and may not typecheck at all.

\texttt{{-# LANGUAGE RankNTypes #-}}

\[ rank1 = \lambda (a). \lambda (a \to a) \to (\text{Bool}, \text{Char}) \]
\[ rank1 f = (f \text{ True}, f \text{'a'}) \]
\[ rank2 = \lambda (a). \lambda (a \to a) \to (\text{Bool}, \text{Char}) \]
\[ rank2 f = (f \text{ True}, f \text{'a'}) \]
\[ auto = \lambda (a). \lambda (a \to a) \to (\forall b. \lambda (b). \lambda b \to b) \]
\[ auto x = x \]
\[ xauto = \lambda (a). \lambda (b. \lambda b \to b) \to \lambda a \to a \]
\[ xauto f = f \]

Monomorphic Rank 0: \( t \)
Polymorphic Rank 1: \( \forall a. a \to t \)
Polymorphic Rank 2: \( \forall (a. a \to t) \to t \)
Polymorphic Rank 3: \( ((\forall a. a \to t) \to t) \to t \)
Of important note is that the type variables bound by an explicit quantifier in a higher ranked type may not escape their enclosing scope; the typechecker will explicitly enforce this with by enforcing that variables bound inside of rank-n types (called skolem constants) will not unify with free meta type variables inferred by the inference engine.

{-# LANGUAGE RankNTypes #-}

```haskell
escape :: (forall a. a -> a) -> Int
escape f = f 0
```

```haskell
ghci> escape (\ a -> x)
```

In this example in order for the expression to be well typed, \( f \) would necessarily have \((\text{Int} \to \text{Int})\) which implies that \( a \sim \text{Int} \) over the whole type, but since \( a \) is bound under the quantifier it must not be unified with \( \text{Int} \) and so the typechecker must fail with a skolem capture error.

```haskell
Couldn't match expected type `a' with actual type `t'
 `a' is a rigid type variable bound by a type expected by the context: a -> a
 `t' is a rigid type variable bound by the inferred type of g :: t -> Int
In the expression: x In the first argument of `escape', namely `\ a -> x'
In the expression: escape (\ a -> x)
```

This can actually be used for our advantage to enforce several types of invariants about scope and use of specific type variables. For example, the ST monad uses a second rank type to prevent the capture of references between ST monads with separate state threads where the \( s \) type variable is bound within a rank-2 type and cannot escape, statically guaranteeing that the implementation details of the ST internals can’t leak out and thus ensuring its referential transparency.

### Existential Quantification

An existential type is a pair of a type and a term with a special set of packing and unpacking semantics. The type of the value encoded in the existential is known by the producer but not by the consumer of the existential value.

{-# LANGUAGE ExistentialQuantification #-}

```haskell
{-# LANGUAGE RankNTypes #-}

-- t. (t, t -> t, t -> String)
```data``` Box = forall a. Box a (a -> a) (a -> String)

```haskell
boxa :: Box
boxa = Box 1 negate show

boxb :: Box
boxb = Box "foo" reverse show
```
apply :: Box -> String
apply (Box x f p) = p (f x)

-- t. Show t => t
data SBox = forall a. Show a => SBox a

boxes :: [SBox]
boxes = [SBox (), SBox 2, SBox "foo"]

showBox :: SBox -> String
showBox (SBox a) = show a

main :: IO ()
main = mapM_ (putStrLn . showBox) boxes
-- ()
-- 2
-- "foo"

The existential over SBox gathers a collection of values defined purely in terms of their Show interface and an opaque pointer, no other information is available about the values and they can’t be accessed or unpacked in any other way.

Passing around existential types allows us to hide information from consumers of data types and restrict the behavior that functions can use. Passing records around with existential variables allows a type to be “bundled” with a fixed set of functions that operate over its hidden internals.

{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ExistentialQuantification #-}

-- a b are existentially bound type variables, m is a free type variable
data MonadI m = MonadI
    { _return :: forall a . a -> m a
    , _bind :: forall a b . m a -> (a -> m b) -> m b
    }

monadMaybe:: MonadI Maybe
monadMaybe = MonadI
    { _return = Just
    , _bind = \m f -> case m of
        Nothing -> Nothing
        Just x -> f x
    }
Impredicative Types

This is an advanced section, and is not typically necessary to write Haskell.

Although extremely brittle, GHC also has limited support for impredicative polymorphism which allows instantiating type variable with a polymorphic type. Implied is that this loosens the restriction that quantifiers must precede arrow types and now they may be placed inside of type-constructors.

```
-- Can't unify (Int ~ Char)

revUni :: forall a. Maybe ([a] -> [a]) -> Maybe ([Int], [Char])
revUni (Just g) = Just (g [3], g "hello")
revUni Nothing = Nothing
{-# LANGUAGE ImpredicativeTypes #-}

-- Uses higher-ranked polymorphism.
f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get ['a', 'b', 'c'])

-- Uses impredicative polymorphism.
g :: Maybe (forall a. [a] -> a) -> (Int, Char)
g Nothing = (0, '0')
g (Just get) = (get [1,2], get ['a', 'b', 'c'])
```

Use of this extension is very rare, and there is some consideration that `-XImpredicativeTypes` is fundamentally broken. Although GHC is very liberal about telling us to enable it when one accidentally makes a typo in a type signature!

Some notable trivia, the ($) operator is wired into GHC in a very special way as to allow impredicative instantiation of `runST` to be applied via ($) by special-casing the ($) operator only when used for the ST monad. If this sounds like an ugly hack it’s because it is, but a rather convenient hack.

For example if we define a function `apply` which should behave identically to ($) we’ll get an error about polymorphic instantiation even though they are defined identically!

```
{-# LANGUAGE RankNTypes #-}

import Control.Monad.ST

f `apply` x = f x

foo :: (forall s. ST s a) -> a
foo st = runST $ st
```
bar :: (forall s. ST s a) -> a
bar st = runST `apply` st

    Couldn't match expected type `(forall s. ST s a)'
    with actual type `ST s0 a'
In the second argument of `apply', namely `st'
In the expression: runST `apply` st
In an equation for `bar': bar st = runST `apply` st

See:
- SPJ Notes on $${Scoped Type Variables}$$

**Scoped Type Variables**

Normally the type variables used within the toplevel signature for a function are
only scoped to the type-signature and not the body of the function and its rigid
signatures over terms and let/where clauses. Enabling `-XScopedTypeVariables`
loosens this restriction allowing the type variables mentioned in the toplevel to
be scoped within the value-level body of a function and all signatures contained
therein.

```{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE ScopedTypeVariables #-}

data poly :: forall a b c. a -> b -> c -> (a, a)
poly x y z = (f x y, f x z)
 where
 -- second argument is universally quantified from inference
 -- f :: forall t0 t1. t0 -> t1 -> t0
 f x' _ = x'

data mono :: forall a b c. a -> b -> c -> (a, a)
mono x y z = (f x y, f x z)
 where
 -- b is not implicitly universally quantified because it is in scope
 f :: a -> b -> a
 f x' _ = x'
```

```example :: IO ()
example = do
 x :: [Int] <- readLn
 print x
```
GADTs

GADTs

Generalized Algebraic Data types (GADTs) are an extension to algebraic datatypes that allow us to qualify the constructors to datatypes with type equality constraints, allowing a class of types that are not expressible using vanilla ADTs.

-XGADTs implicitly enables an alternative syntax for datatype declarations (-XGADTSyntax) such that the following declarations are equivalent:

-- Vanilla

```haskell
data List a = Empty | Cons a (List a)
```

-- GADTSyntax

```haskell
data List a where
 Empty :: List a
 Cons :: a -> List a -> List a
```

For an example use consider the data type `Term`, we have a term in which we `Succ` which takes a `Term` parameterized by `a` which span all types. Problems arise between the clash whether (`a ~ Bool`) or (`a ~ Int`) when trying to write the evaluator.

```haskell
data Term a where
 Lit a
 | Succ (Term a)
 | IsZero (Term a)
```

-- can't be well-typed :(

```haskell
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
```

And we admit the construction of meaningless terms which forces more error handling cases.

-- This is a valid type.

```haskell
failure = Succ (Lit True)
```

Using a GADT we can express the type invariants for our language (i.e. only type-safe expressions are representable). Pattern matching on this GADTs then carries type equality constraints without the need for explicit tags.

{-# Language GADTs #-}

```haskell
data Term a where
```

Lit :: a -> Term a
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i) = i -- Term a
eval (Succ t) = 1 + eval t -- Term (a ~ Int)
eval (IsZero i) = eval i == 0 -- Term (a ~ Int)
eval (If b e1 e2) = if eval b then eval e1 else eval e2 -- Term (a ~ Bool)

example :: Int
example = eval (Succ (Succ (Lit 3)))

This time around:
-- This is rejected at compile-time.
failure = Succ (Lit True)

Explicit equality constraints (a ~ b) can be added to a function’s context. For example the following expand out to the same types.

f :: a -> a -> (a, a)

f :: (a ~ b) => a -> b -> (a,b)

(Int ~ Int) => ...
(a ~ Int) => ...
(Int ~ a) => ...
(a ~ b) => ...
(Int ~ Bool) => ... -- Will not typecheck.

This is effectively the implementation detail of what GHC is doing behind the scenes to implement GADTs (implicitly passing and threading equality terms around). If we wanted we could do the same setup that GHC does just using equality constraints and existential quantification. Indeed, the internal representation of GADTs is as regular algebraic datatypes that carry coercion evidence as arguments.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExistentialQuantification #-}

-- Using Constraints
data Exp a
  = (a ~ Int) => LitInt a
  | (a ~ Bool) => LitBool a
  | forall b. (b ~ Bool) => If (Exp b) (Exp a) (Exp a)

-- Using GADTs
-- data Exp a where
--   LitInt :: Int -> Exp Int
eval :: Exp a -> a

In the presence of GADTs inference becomes intractable in many cases, often requiring an explicit annotation. For example \( f \) can either have \( T \ a \rightarrow [a] \) or \( T \ a \rightarrow [\text{Int}] \) and neither is principal.

\[
data T :: * \rightarrow * \text{ where}
    T1 :: \text{Int} \rightarrow T \text{Int}
    T2 :: T \ a
\]

\[
f (T1 \ n) = [n]
f T2 = []
\]

**Kind Signatures**

Haskell’s kind system (i.e. the “type of the types”) is a system consisting the single kind \( * \) and an arrow kind \(-\rightarrow\).

\[
:\ *
| \rightarrow
\]

\[
\text{Int} :: *
\text{Maybe} :: * \rightarrow *
\text{Either} :: * \rightarrow * \rightarrow *
\]

There are in fact some extensions to this system that will be covered later (see: PolyKinds and Unboxed types in later sections) but most kinds in everyday code are simply either stars or arrows.

With the KindSignatures extension enabled we can now annotate top level type signatures with their explicit kinds, bypassing the normal kind inference procedures.

\{-# LANGUAGE KindSignatures #-\}

\[
id :: \forall (a :: *). \ a \rightarrow a
\]

\[
id x = x
\]

On top of default GADT declaration we can also constrain the parameters of the GADT to specific kinds. For basic usage Haskell’s kind inference can deduce this reasonably well, but combined with some other type system extensions that extend the kind system this becomes essential.
{-# Language GADTs #-}
{-# LANGUAGE KindSignatures #-}

```haskell
data Term a :: * where
 Lit :: a -> Term a
 Succ :: Term Int -> Term Int
 IsZero :: Term Int -> Term Bool
 If :: Term Bool -> Term a -> Term a -> Term a

data Vec :: * -> * -> * where
 Nil :: Vec n a
 Cons :: a -> Vec n a -> Vec n a

data Fix :: (** -> *) -> * where
 In :: f (Fix f) -> Fix f
```

**Void**

The Void type is the type with no inhabitants. It unifies only with itself.

Using a newtype wrapper we can create a type where recursion makes it impossible to construct an inhabitant.

```haskell
-- Void :: Void -> Void
newtype Void = Void Void
```

Or using `-XEmptyDataDecls` we can also construct the uninhabited type equivalently as a data declaration with no constructors.

```haskell
data Void
```

The only inhabitant of both of these types is a diverging term like `undefined`.

**Phantom Types**

Phantom types are parameters that appear on the left hand side of a type declaration but which are not constrained by the values of the types inhabitants. They are effectively slots for us to encode additional information at the type-level.

```haskell
import Data.Void

data Foo tag a = Foo a

combine :: Num a => Foo tag a -> Foo tag a -> Foo tag a
combine (Foo a) (Foo b) = Foo (a+b)
```

```haskell
-- All identical at the value level, but differ at the type level.
```
a :: Foo () Int
  a = Foo 1

b :: Foo t Int
  b = Foo 1

c :: Foo Void Int
  c = Foo 1

-- () ~ ()
example1 :: Foo () Int
example1 = combine a a

-- t ~ ()
example2 :: Foo () Int
example2 = combine a b

-- t0 ~ t1
example3 :: Foo t Int
example3 = combine b b

-- Couldn't match type `t' with `Void'
example4 :: Foo t Int
example4 = combine b c

Notice the type variable tag does not appear in the right hand side of the declaration. Using this allows us to express invariants at the type-level that need not manifest at the value-level. We’re effectively programming by adding extra information at the type-level.

Consider the case of using newtypes to statically distinguish between plaintext and cryptotext.

newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

Using phantom types we use an extra parameter.

import Data.Text

data Cryptotext
data Plaintext

data Msg a = Msg Text
encrypt :: Msg Plaintext -> Msg Cryptotext
encrypt = undefined

decrypt :: Msg Plaintext -> Msg Cryptotext
decrypt = undefined

Using -XEmptyDataDecs can be a powerful combination with phantom types that contain no value inhabitants and are “anonymous types”.

{-# LANGUAGE EmptyDataDecs #-}

data Token a

See: Fun with Phantom Types

Typelevel Operations

This is an advanced section, and is not typically necessary to write Haskell.

With a richer language for datatypes we can express terms that witness the relationship between terms in the constructors, for example we can now express a term which expresses propositional equality between two types.

The type Eq a b is a proof that types a and b are equal, by pattern matching on the single Refl constructor we introduce the equality constraint into the body of the pattern match.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExplicitForAll #-}

-- a b
data Eql a b where
  Refl :: Eql a a

-- Congruence
-- (f : A → B) {x y} → x y → f x f y
cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- Symmetry
-- {a b : A} → a b → a b
sym :: Eql a b -> Eql b a
sym Refl = Refl

-- Transitivity
-- {a b c : A} → a b → b c → a c
trans :: Eql a b -> Eql b c -> Eql a c
trans Refl Refl = Refl
-- Coerce one type to another given a proof of their equality.
-- \{a b : A\} → a \equiv b → a → b

\[
\text{castWith} :: \text{Eql} \ a \ b \Rightarrow \text{a} \rightarrow \text{b}
\]

\[\text{castWith \ Refl} = \text{id}\]

-- Trivial cases
\[a :: \forall \ n. \ \text{Eql} \ n \ n\]
\[a = \text{Refl}\]

\[b :: \forall. \ \text{Eql} (\cdot) (\cdot)\]
\[b = \text{Refl}\]

As of GHC 7.8 these constructors and functions are included in the Prelude in the \text{Data.Type.Equality} module.

**Interpreters**

The lambda calculus forms the theoretical and practical foundation for many languages. At the heart of every calculus is three components:

- **Var** - A variable
- **Lam** - A lambda abstraction
- **App** - An application

![Figure 1:](image)

There are many different ways of modeling these constructions and data structure representations, but they all more or less contain these three elements. For example, a lambda calculus that uses String names on lambda binders and variables might be written like the following:

\[
\text{type Name} = \text{String}
\]

\[
\text{data Exp}
\Rightarrow \text{Var Name}
| \text{Lam Name Exp}
| \text{App Exp Exp}
\]

125
A lambda expression in which all variables that appear in the body of the expression are referenced in an outer lambda binder is said to be *closed* while an expression with unbound free variables is *open*.

**HOAS**

Higher Order Abstract Syntax (HOAS) is a technique for implementing the lambda calculus in a language where the binders of the lambda expression map directly onto lambda binders of the host language (i.e. Haskell) to give us substitution machinery in our custom language by exploiting Haskell’s implementation.

```
{-# LANGUAGE GADTs #-}

data Expr a where
 Con :: a -> Expr a
 Lam :: (Expr a -> Expr b) -> Expr (a -> b)
 App :: Expr (a -> b) -> Expr a -> Expr b

i :: Expr (a -> a)
i = Lam (\x -> x)

k :: Expr (a -> b -> a)
k = Lam (\x -> Lam (\y -> x))

s :: Expr ((a -> b -> c) -> (a -> b) -> (a -> c))
s = Lam (\x -> Lam (\y -> Lam (\z -> App (App x z) (App y z))))

eval :: Expr a -> a
eval (Con v) = v
eval (Lam f) = \x -> eval (f (Con x))
eval (App e1 e2) = (eval e1) (eval e2)

skk :: Expr (a -> a)
skk = App (App s k)

example :: Integer
example = eval skk 1
 -- 1
```

Pretty printing HOAS terms can also be quite complicated since the body of the function is under a Haskell lambda binder.
PHOAS

A slightly different form of HOAS called PHOAS uses lambda datatype parameterized over the binder type. In this form evaluation requires unpacking into a separate Value type to wrap the lambda expression.

{-# LANGUAGE RankNTypes #-}

data ExprP a
  = VarP a
  | AppP (ExprP a) (ExprP a)
  | LamP (a -> ExprP a)
  | LitP Integer

data Value
  = VLit Integer
  | VFun (Value -> Value)

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of
  VFun f -> f
  _       -> error "not a function"

fromVLit :: Value -> Integer
fromVLit val = case val of
  VLit n -> n
  _       -> error "not a integer"

newtype Expr = Expr { unExpr :: forall a . ExprP a }

eval :: Expr -> Value
eval e = ev (unExpr e) where
  ev (LamP f)    = VFun(ev . f)
  ev (VarP v)    = v
  ev (AppP e1 e2) = fromVFun (ev e1) (ev e2)
  ev (LitP n)    = VLit n

i :: ExprP a
i = LamP (\a -> VarP a)

k :: ExprP a
k = LamP (\x -> LamP (\y -> VarP x))

s :: ExprP a
s = LamP (\x -> LamP (\y -> LamP (\z -> AppP (AppP (VarP x) (VarP z)) (AppP (VarP y) (VarP z)))))
skk :: ExprP a
skk = AppP (AppP s k) k

eexample :: Integer
eexample = fromVLit $ eval $ Expr (AppP skk (LitP 3))

See:
- PHOAS
- Encoding Higher-Order Abstract Syntax with Parametric Polymorphism

Final Interpreters

Using typeclasses we can implement a final interpreter which models a set of extensible terms using functions bound to typeclasses rather than data constructors.Instances of the typeclass form interpreters over these terms.

For example we can write a small language that includes basic arithmetic, and then retroactively extend our expression language with a multiplication operator without changing the base. At the same time our interpreter logic remains invariant under extension with new expressions.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

class Expr repr where
  lit :: Int -> repr
  neg :: repr -> repr
  add :: repr -> repr -> repr
  mul :: repr -> repr -> repr

instance Expr Int where
  lit n = n
  neg a = -a
  add a b = a + b
  mul a b = a * b

instance Expr String where
  lit n = show n
  neg a = "(-" ++ a ++ "")"
  add a b = "(" ++ a ++ " + " ++ b ++ ")"
  mul a b = "(" ++ a ++ " * " ++ b ++ ")"

class BoolExpr repr where
  eq :: repr -> repr -> repr
\textbf{Finally Tagless}

Writing an evaluator for the lambda calculus can likewise also be modeled with a final interpreter and a \texttt{Identity} functor.

\texttt{import Prelude hiding (id)}

\texttt{class Expr rep where}
  \texttt{lam :: (rep a \to rep b) \to rep (a \to b)}
  \texttt{app :: rep (a \to b) \to (rep a \to rep b)}
  \texttt{lit :: a \to rep a}

\texttt{newtype Interpret a = R \{ reify :: a \}}

\texttt{instance Expr Interpret where}
lam f = R $ reify . f . R
app f a = R $ reify f $ reify a
lit = R

eval :: Interpret a -> a
eval e = reify e

e1 :: Expr rep => rep Int
e1 = app (lam (\x -> x)) (lit 3)

e2 :: Expr rep => rep Int
e2 = app (lam (\x -> lit 4)) (lam $ \x -> lam $ \y -> y)

example1 :: Int
example1 = eval e1
-- 3

example2 :: Int
example2 = eval e2
-- 4

See: Typed Tagless Interpretations and Typed Compilation

Datatypes

The usual hand-wavy of describing algebraic datatypes is to indicate the how
natural correspondence between sum types, product types, and polynomial ex-
pressions arises.

data Void -- 0
data Unit = Unit -- 1
data Sum a b = Inl a | Inr b -- a + b
data Prod a b = Prod a b -- a * b
type (->) a b = a -> b -- b ^ a

Intuitively it follows the notion that the cardinality of set of inhabitants of a
type can always be given as a function of the number of its holes. A product
type admits a number of inhabitants as a function of the product (i.e. cardinality
of the Cartesian product), a sum type as the sum of its holes and a function
type as the exponential of the span of the domain and codomain.

-- 1 + A
data Maybe a = Nothing | Just a

Recursive types are correspond to infinite series of these terms.

-- pseudocode
```
-- X. 1 + X
data Nat a = Z | S Nat
Nat a = a. 1 + a
 = 1 + (1 + (1 + ...))

-- X. 1 + A * X
data List a = Nil | Cons a (List a)
List a = a. 1 + a * (List a)
 = 1 + a + a^2 + a^3 + a^4 ...

-- X. A + A*X*X
data Tree a f = Leaf a | Tree a f f
Tree a = a. 1 + a * (List a)
 = 1 + a^2 + a^4 + a^6 + a^8 ...

See: Species and Functors and Types, Oh My!

F-Algebras

This is an advanced section, and is not typically necessary to write Haskell.

The initial algebra approach differs from the final interpreter approach in that we now represent our terms as algebraic datatypes and the interpreter implements recursion and evaluation occurs through pattern matching.

```
type Algebra f a = f a -> a

type Coalgebra f a = a -> f a

newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
ana :: Functor f => Coalgebra f a -> a -> Fix f
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
```

In Haskell a F-algebra is a functor \(f \) \(a \) together with a function \(f \) \(a \rightarrow a \). A coalgebra reverses the function. For a functor \(f \) we can form its recursive unrolling using the recursive \(\text{Fix} \) newtype wrapper.

```
newtype Fix f = Fix { unFix :: f (Fix f) }

Fix :: f (Fix f) -> Fix f
unFix :: Fix f -> f (Fix f)
Fix f = f (f (f (f (f (f (f (f (f (f ... ))))))))
```

```
newtype T b a = T (a -> b)
Fix (T a)
Fix T -> a
```
In this form we can write down a generalized fold/unfold function that are
datatype generic and written purely in terms of the recursing under the functor.

\[
cata :: \text{Functor } f \Rightarrow \text{Algebra } f \text{ a } \rightarrow \text{Fix } f \rightarrow a
\]
\[
cata \text{ alg} = \text{alg} . \text{fmap (cata alg)}. \text{unFix}
\]

\[
ana :: \text{Functor } f \Rightarrow \text{Coalgebra } f \text{ a } \rightarrow a \rightarrow \text{Fix } f
\]
\[
ana \text{ coalg} = \text{Fix} . \text{fmap (ana coalg)}. \text{coalg}
\]

We call these functions \textit{catamorphisms} and \textit{anamorphisms}. Notice especially
that the types of these two functions simply reverse the direction of arrows.
Interpreted in another way they transform an algebra/coalgebra which defines
a flat structure-preserving mapping between \text{Fix } f f into a function which either
rolls or unrolls the fixpoint. What is particularly nice about this approach is
that the recursion is abstracted away inside the functor definition and we are
free to just implement the flat transformation logic!

For example a construction of the natural numbers in this form:

\[{-# LANGUAGE TypeOperators #-}]
\[{-# LANGUAGE DeriveFunctor #-}]
\[{-# LANGUAGE StandaloneDeriving #-}]
\[{-# LANGUAGE FlexibleInstances #-}]
\[{-# LANGUAGE UndecidableInstances #-}]

\[
\text{type Algebra } f \text{ a } = f \text{ a } \rightarrow a
\]
\[
\text{type Coalgebra } f \text{ a } = a \rightarrow f \text{ a}
\]
\[
\text{newtype Fix } f = \text{Fix } \{ \text{unFix} :: f (\text{Fix } f) \}
\]

\[\text{-- catamorphism}\]
\[
cata :: \text{Functor } f \Rightarrow \text{Algebra } f \text{ a } \rightarrow \text{Fix } f \rightarrow a
\]
\[
cata \text{ alg} = \text{alg} . \text{fmap (cata alg)}. \text{unFix}
\]

\[\text{-- anamorphism}\]
\[
ana :: \text{Functor } f \Rightarrow \text{Coalgebra } f \text{ a } \rightarrow a \rightarrow \text{Fix } f
\]
\[
ana \text{ coalg} = \text{Fix} . \text{fmap (ana coalg)}. \text{coalg}
\]

\[\text{-- hylomorphism}\]
\[
hylo :: \text{Functor } f \Rightarrow \text{Algebra } f \text{ b } \rightarrow \text{Coalgebra } f \text{ a } \rightarrow a \rightarrow b
\]
\[
hylo \text{ f g} = \text{cata f} . \text{ana g}
\]

\[
\text{type Nat } = \text{Fix NatF}
\]
\[
\text{data NatF a } = \text{S a} | \text{Z deriving (Eq,Show)}
\]
instance Functor NatF where
 fmap f Z = Z
 fmap f (S x) = S (f x)

 plus :: Nat -> Nat -> Nat
 plus n = cata phi where
 phi Z = n
 phi (S m) = s m

 times :: Nat -> Nat -> Nat
 times n = cata phi where
 phi Z = z
 phi (S m) = plus n m

 int :: Nat -> Int
 int = cata phi where
 phi Z = 0
 phi (S f) = 1 + f

 nat :: Integer -> Nat
 nat = ana (psi Z S) where
 psi f _ 0 = f
 psi _ f n = f (n-1)

 z :: Nat
 z = Fix Z

 s :: Nat -> Nat
 s = Fix . S

 type Str = Fix StrF
 data StrF x = Cons Char x | Nil

 instance Functor StrF where
 fmap f (Cons a as) = Cons a (f as)
 fmap f Nil = Nil

 nil :: Str
 nil = Fix Nil

 cons :: Char -> Str -> Str
 cons x xs = Fix (Cons x xs)

 str :: Str -> String
str = cata phi where
 phi Nil = []
 phi (Cons x xs) = x : xs

str' :: String -> Str
str' = ana (psi Nil Cons) where
 psi f _ [] = f
 psi _ f (a:as) = f a as

map' :: (Char -> Char) -> Str -> Str
map' f = hylo g unFix
 where
 g Nil = Fix Nil
 g (Cons a x) = Fix $ Cons (f a) x

type Tree a = Fix (TreeF a)
data TreeF a f = Leaf a | Tree a f f deriving (Show)

instance Functor (TreeF a) where
 fmap f (Leaf a) = Leaf a
 fmap f (Tree a b c) = Tree a (f b) (f c)

depth :: Tree a -> Int
depth = cata phi where
 phi (Leaf _) = 0
 phi (Tree _ l r) = 1 + max l r

example1 :: Int
example1 = int (plus (nat 125) (nat 25))
 -- 150

Or for example an interpreter for a small expression language that depends on
a scoping dictionary.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Control.Applicative
import qualified Data.Map as M

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a

134
newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Id = String

type Env = M.Map Id Int

type Expr = Fix ExprF
data ExprF a
 = Lit Int
 | Var Id
 | Add a a
 | Mul a a
deriving (Show, Eq, Ord, Functor)

deriving instance Eq (f (Fix f)) => Eq (Fix (f a))
deriving instance Ord (f (Fix f)) => Ord (Fix (f a))
deriving instance Show (f (Fix f)) => Show (Fix (f a))

eval :: M.Map Id Int -> Fix ExprF -> Maybe Int
eval env = cata phi where
 phi ex = case ex of
 Lit c -> pure c
 Var i -> M.lookup i env
 Add x y -> liftA2 (+) x y
 Mul x y -> liftA2 (*) x y

eval env = cata phi where
 phi ex = case ex of
 Lit c -> pure c
 Var i -> M.lookup i env
 Add x y -> liftA2 (+) x y
 Mul x y -> liftA2 (*) x y

expr :: Expr
eval env = cata phi where
 phi ex = case ex of
 Lit c -> pure c
 Var i -> M.lookup i env
 Add x y -> liftA2 (+) x y
 Mul x y -> liftA2 (*) x y

expr = Fix (Mul n (Fix (Add x y)))

expr = Fix (Mul n (Fix (Add x y)))

where
 n = Fix (Lit 10)
 x = Fix (Var "x")
 y = Fix (Var "y")

env :: M.Map Id Int
eval env = cata phi where
 phi ex = case ex of
 Lit c -> pure c
 Var i -> M.lookup i env
 Add x y -> liftA2 (+) x y
 Mul x y -> liftA2 (*) x y

compose :: (f (Fix f) -> c) -> (a -> Fix f) -> a -> c
compose \(x \cdot y = x \cdot \text{unFix} \cdot y \)

eexample :: Maybe Int
eexample = eval env expr

-- Just 30

What’s especially nice about this approach is how naturally catamorphisms compose into efficient composite transformations.

\[
\text{compose} :: \text{Functor} \, f \rightarrow (f (\text{Fix} \, f) \rightarrow c) \rightarrow (a \rightarrow \text{Fix} \, f) \rightarrow a \rightarrow c
\]
\[
\text{compose} \, f \, g = f \cdot \text{unFix} \cdot g
\]

- Understanding F-Algebras

recursion-schemes

This is an advanced section, and is not typically necessary to write Haskell.

The code from the F-algebra examples above is implemented in an off-the-shelf library called recursion-schemes.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveFunctor #-}

import Data.Functor.Foldable

type Var = String

data Exp
 = Var Var
 | App Exp Exp
 | Lam [Var] Exp
deriving Show

data ExpF a
 = VarF Var
 | AppF a a
 | LamF [Var] a
deriving Functor

type instance Base Exp = ExpF

instance Foldable Exp where
 project (Var a) = VarF a
 project (App a b) = AppF a b
 project (Lam a b) = LamF a b

instance Unfoldable Exp where

136
embed (VarF a) = Var a
embed (AppF a b) = App a b
embed (LamF a b) = Lam a b

fvs :: Exp -> [Var]
fvs = cata phi
 where phi (VarF a) = [a]
 phi (AppF a b) = a ++ b
 phi (LamF a b) = foldr (filter (/=)) a b

An example of usage:
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Data.Traversable
import Control.Monad hiding (forM_, mapM, sequence)
import Prelude hiding (mapM)
import qualified Data.Map as M

newtype Fix (f :: * -> *) = Fix { outF :: f (Fix f) }

 -- Catamorphism
 cata :: Functor f => (f a -> a) -> Fix f -> a
 cata f = f . fmap (cata f) . outF

 -- Monadic catamorphism
 cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
 cataM f = f <=< mapM (cataM f) . outF

data ExprF r
 = EVar String
 | EApp r r
 | ELam r r
 deriving (Show, Eq, Ord, Functor)

type Expr = Fix ExprF

instance Show (Fix ExprF) where
 show (Fix f) = show f

instance Eq (Fix ExprF) where
 Fix x == Fix y = x == y

instance Ord (Fix ExprF) where
compare (Fix x) (Fix y) = compare x y

mkApp :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkApp x y = Fix (EApp x y)

mkVar :: String -> Fix ExprF
mkVar x = Fix (EVar x)

mkLam :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkLam x y = Fix (ELam x y)

i :: Fix ExprF
i = mkLam (mkVar "x") (mkVar "x")

k :: Fix ExprF
k = mkLam (mkVar "x") $ mkLam (mkVar "y") $ (mkVar "x")

subst :: M.Map String (ExprF Expr) -> Expr -> Expr
subst env = cata alg where
 alg (EVar x) | Just e <- M.lookup x env = Fix e
 alg e = Fix e

See:
 • recursion-schemes

Hint and Mueval

This is an advanced section, and is not typically necessary to write Haskell.

GHC itself can actually interpret arbitrary Haskell source on the fly by hooking into the GHC’s bytecode interpreter (the same used for GHCi). The hint package allows us to parse, typecheck, and evaluate arbitrary strings into arbitrary Haskell programs and evaluate them.

import Language.Haskell.Interpreter

foo :: Interpreter String
foo = eval "(\x -> x) 1"

does :: IO (Either InterpreterError String)
does = runInterpreter foo

This is generally not a wise thing to build a library around, unless of course the purpose of the program is itself to evaluate arbitrary Haskell code (something like an online Haskell shell or the likes).
Both hint and mueval do effectively the same task, designed around slightly different internals of the GHC Api.

See:
- hint
- mueval

Testing

Contrary to a lot of misinformation, unit testing in Haskell is quite common and robust. Although generally speaking unit tests tend to be of less importance in Haskell since the type system makes an enormous amount of invalid programs completely inexpressible by construction. Unit tests tend to be written later in the development lifecycle and generally tend to be about the core logic of the program and not the intermediate plumbing.

A prominent school of thought on Haskell library design tends to favor constructing programs built around strong equation laws which guarantee strong invariants about program behavior under composition. Many of the testing tools are built around this style of design.

QuickCheck

Probably the most famous Haskell library, QuickCheck is a testing framework for generating large random tests for arbitrary functions automatically based on the types of their arguments.

```haskell
quickCheck :: Testable prop => prop -> IO ()
(==> :) :: Testable prop => Bool -> prop -> Property
forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property
choose :: Random a => (a, a) -> Gen a

import Test.QuickCheck

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
  where lhs = filter (< x) xs
        rhs = filter (>= x) xs

prop_maximum :: [Int] -> Property
prop_maximum xs = not (null xs) ==> last (qsort xs) == maximum xs
```

139
main :: IO ()
main = quickCheck prop_maximum

$ runhaskell qcheck.hs
*** Failed! Falsifiable (after 3 tests and 4 shrinks):
[0]
[1]

$ runhaskell qcheck.hs
+++ OK, passed 1000 tests.

The test data generator can be extended with custom types and refined with predicates that restrict the domain of cases to test.

import Test.QuickCheck
data Color = Red | Green | Blue deriving Show

instance Arbitrary Color where
 arbitrary = do
 n <- choose (0,2) :: Gen Int
 return $ case n of
 0 -> Red
 1 -> Green
 2 -> Blue

example1 :: IO [Color]
example1 = sample' arbitrary
 -- [Red,Green,Red,Blue,Red,Red,Blue,Green,Red,Red]

See: QuickCheck: An Automatic Testing Tool for Haskell

SmallCheck

Like QuickCheck, SmallCheck is a property testing system but instead of producing random arbitrary test data it instead enumerates a deterministic series of test data to a fixed depth.

smallCheck :: Testable IO a => Depth -> a -> IO ()
list :: Depth -> Series Identity a -> [a]
sample' :: Gen a -> IO [a]
 : list 3 series :: [Int]
 [0,1,-1,2,-2,3,-3]
 : list 3 series :: [Double]
 [0.0,1.0,-1.0,2.0,0.5,-2.0,4.0,0.25,-0.5,-4.0,-0.25]
It is useful to generate test cases over all possible inputs of a program up to some depth.

```haskell
import Test.SmallCheck

distrib :: Int -> Int -> Int -> Bool
distrib a b c = a * (b + c) == a * b + a * c

ciauchy :: [Double] -> [Double] -> Bool
ciauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

failure :: [Double] -> [Double] -> Bool
failure xs ys = abs (dot xs ys) <= (dot xs xs) * (dot ys ys)

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum (zipWith (*) xs ys)

main :: IO ()
main = do
    putStrLn "Testing distributivity..."
    smallCheck 25 distrib

    putStrLn "Testing Cauchy-Schwarz..."
    smallCheck 4 cauchy

    putStrLn "Testing invalid Cauchy-Schwarz..."
    smallCheck 4 failure

    $ runhaskell smallcheck.hs

    Testing distributivity...
    Completed 132651 tests without failure.

    Testing Cauchy-Schwarz...
    Completed 27556 tests without failure.

    Testing invalid Cauchy-Schwarz...
    Failed test no. 349.
    there exist [1.0] [0.5] such that
    condition is false
```

Just like for QuickCheck we can implement series instances for our custom datatypes. For example there is no default instance for Vector, so let’s implement one:
import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Applicative
import qualified Data.Vector as V

dot :: Num a => V.Vector a -> V.Vector a -> a
dot xs ys = V.sum (V.zipWith (*) xs ys)

cauchy :: V.Vector Double -> V.Vector Double -> Bool
cauhcy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

instance (Serial m a, Monad m) => Serial m (V.Vector a) where
 series = V.fromList <$> series

main :: IO ()
main = smallCheck 4 cauchy

QuickSpec

Using the QuickCheck arbitrary machinery we can also rather remarkably enumerate a large number of combinations of functions to try and deduce algebraic laws from trying out inputs for small cases.
Of course the fundamental limitation of this approach is that a function may not exhibit any interesting properties for small cases or for simple function compositions. So in general case this approach won’t work, but practically it still quite useful.

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}

```haskell
import Data.List
import Data.Typeable

import Test.QuickSpec hiding (lists, bools, arith)
import Test.QuickCheck

type Var k a = (Typeable a, Arbitrary a, CoArbitrary a, k a)

listCons :: forall a. Var Ord a => a -> Sig
listCons a = background
["[]" `fun0` ([] :: [a]),
 "::" `fun2` (:: :: a -> [a] -> [a])
]

lists :: forall a. Var Ord a => a -> [Sig]
lists a =
[ -- Names to print arbitrary variables
  funs',
  funvars',
  vars',

  -- Ambient definitions
  listCons a,

  -- Expressions to deduce properties of
  "sort" `fun1` (sort :: [a] -> [a]),
  "map" `fun2` (map :: (a -> a) -> [a] -> [a]),
  "id" `fun1` (id :: [a] -> [a]),
  "reverse" `fun1` (reverse :: [a] -> [a]),
  "minimum" `fun1` (minimum :: [a] -> a),
  "length" `fun1` (length :: [a] -> Int),
  "++" `fun2` (++) :: [a] -> [a] -> [a])
]
```

where
funs' = funs (undefined :: a)
funvars' = vars ["f", "g", "h"] (undefined :: a -> a)
vars' = ["xs", "ys", "zs"] `vars` (undefined :: [a])

tvar :: A
tvar = undefined

main :: IO ()
main = quickSpec (lists tvar)

Running this we rather see it is able to deduce most of the laws for list functions.

$ runhaskell src/quickspec.hs
== API ==
-- functions --
map :: (A -> A) -> [A] -> [A]
minimum :: [A] -> A
(++) :: [A] -> [A] -> [A]
length :: [A] -> Int
sort, id, reverse :: [A] -> [A]

-- background functions --
id :: A -> A
(:) :: A -> [A] -> [A]
(.) :: (A -> A) -> (A -> A) -> A -> A
[] :: [A]

-- variables --
f, g, h :: A -> A
xs, ys, zs :: [A]

-- the following types are using non-standard equality --
A -> A

-- WARNING: there are no variables of the following types; consider adding some --
A

== Testing ==
Depth 1: 12 terms, 4 tests, 24 evaluations, 12 classes, 0 raw equations.
Depth 2: 80 terms, 500 tests, 18673 evaluations, 52 classes, 28 raw equations.
Depth 3: 1553 terms, 500 tests, 255056 evaluations, 1234 classes, 319 raw equations.
319 raw equations; 1234 terms in universe.

== Equations about map ==
1: map f [] == []
2: map id xs == xs
3: \(\text{map} \ (f \cdot g) \ xs \ = \ \text{map} \ f \ (\text{map} \ g \ xs) \)

== Equations about minimum ==
4: minimum [] == undefined

== Equations about (++) ==
5: xs++[] == xs
6: []++xs == xs
7: (xs++ys)++zs == xs++(ys++zs)

== Equations about sort ==
8: sort [] == []
9: sort (sort xs) == sort xs

== Equations about id ==
10: id xs == xs

== Equations about reverse ==
11: reverse [] == []
12: reverse (reverse xs) == xs

== Equations about several functions ==
13: minimum (xs++ys) == minimum (ys++xs)
14: length (\text{map} \ f \ xs) == length xs
15: length (xs++ys) == length (ys++xs)
16: sort (xs++ys) == sort (ys++xs)
17: \text{map} \ f \ (\text{reverse} \ xs) == \text{reverse} \ (\text{map} \ f \ xs)
18: minimum (sort xs) == minimum xs
19: minimum (reverse xs) == minimum xs
20: minimum (xs++xs) == minimum xs
21: length (sort xs) == length xs
22: length (reverse xs) == length xs
23: sort (reverse xs) == sort xs
24: \text{map} \ f \ xs++\text{map} \ f \ ys == \text{map} \ f \ (xs++ys)
25: \text{reverse} \ xs++\text{reverse} \ ys == \text{reverse} \ (ys++xs)

Keep in mind the rather remarkable fact that this is all deduced automatically from the types alone!

Criterion

Criterion is a statistically aware benchmarking tool.

\[\text{whnf} :: (a \to b) \to a \to \text{Pure} \]
\[\text{nf} :: \text{NFData} \ b \to (a \to b) \to a \to \text{Pure} \]
\[\text{nfIO} :: \text{NFData} \ a \to \text{IO} \ a \to \text{IO} \ () \]
bench :: Benchmarkable b => String -> b -> Benchmark

import Criterion.Main
import Criterion.Config

-- Naive recursion for fibonacci numbers.
fib1 :: Int -> Int
fib1 0 = 0
fib1 1 = 1
fib1 n = fib1 (n-1) + fib1 (n-2)

-- Use the De Moivre closed form for fibonacci numbers.
fib2 :: Int -> Int
fib2 x = truncate $(1 / sqrt 5) * (phi ^ x - psi ^ x)
 where
 phi = (1 + sqrt 5) / 2
 psi = (1 - sqrt 5) / 2

suite :: [Benchmark]
suite = [
 bgroup "naive" [
 bench "fib 10" $ whnf fib1 5
 , bench "fib 20" $ whnf fib1 10
],
 bgroup "de moivre" [
 bench "fib 10" $ whnf fib2 5
 , bench "fib 20" $ whnf fib2 10
]
]

main :: IO ()
main = defaultMain suite

$ runhaskell criterion.hs

warming up
estimating clock resolution...
mean is 2.349801 us (320001 iterations)
found 1788 outliers among 319999 samples (0.6%)
 1373 (0.4%) high severe
estimating cost of a clock call...
mean is 65.52118 ns (23 iterations)
found 1 outliers among 23 samples (4.3%)
 1 (4.3%) high severe

benchmarking naive/fib 10
mean: 9.903067 us, lb 9.885143 us, ub 9.924404 us, ci 0.950
std dev: 100.4508 ns, lb 85.04638 ns, ub 123.1707 ns, ci 0.950
benchmarking naive/fib 20
mean: 120.7269 us, lb 120.5470 us, ub 120.9459 us, ci 0.950
std dev: 1.01456 us, lb 858.6037 ns, ub 1.296920 us, ci 0.950

benchmarking de moivre/fib 10
mean: 7.699219 us, lb 7.671107 us, ub 7.802116 us, ci 0.950
std dev: 247.3021 ns, lb 61.66586 ns, ub 572.1260 ns, ci 0.950
found 4 outliers among 100 samples (4.0%)
 2 (2.0%) high mild
 2 (2.0%) high severe

variance introduced by outliers: 27.726%
variance is moderately inflated by outliers

benchmarking de moivre/fib 20
mean: 8.082639 us, lb 8.018560 us, ub 8.350159 us, ci 0.950
std dev: 595.2161 ns, lb 77.46251 ns, ub 1.408784 us, ci 0.950
found 8 outliers among 100 samples (8.0%)
 4 (4.0%) high mild
 4 (4.0%) high severe

variance introduced by outliers: 67.628%
variance is severely inflated by outliers

Criterion can also generate a HTML page containing the benchmark results plotted

$ ghc -O2 --make criterion.hs
$./criterion -o bench.html

Figure 2:
Tasty

Tasty combines all of the testing frameworks into a common API for forming runnable batches of tests and collecting the results.

```haskell
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import qualified Test.Tasty.SmallCheck as SC

arith :: Integer -> Integer -> Property
arith x y = (x > 0) && (y > 0) ==> (x+y)^2 > x^2 + y^2

negation :: Integer -> Bool
negation x = abs (x^2) >= x

suite :: TestTree
suite = testGroup "Test Suite" [
  testGroup "Units"
  [ testCase "Equality" $ True @=? True,
  testCase "Assertion" $ assert $ (length [1,2,3]) == 3
    ],
  testGroup "QuickCheck tests"
  [ testProperty "Quickcheck test" arith
    ],
  testGroup "SmallCheck tests"
  [ SC.testProperty "Negation" negation
    ]
]

main :: IO ()
main = defaultMain suite
```

$ runhaskell TestSuite.hs
Unit tests
Units
 Equality: OK
 Assertion: OK
QuickCheck tests
 Quickcheck test: OK
 +++ OK, passed 100 tests.
SmallCheck tests
 Negation: OK
 11 tests completed

148
silently

Often in the process of testing IO heavy code we'll need to redirect stdout to compare it some known quantity. The *silently* package allows us to capture anything done to stdout across any library inside of IO block and return the result to the test runner.

```haskell
capture :: IO a -> IO (String, a)
import Test.Tasty
import Test.Tasty.HUnit
import System.IO.Silently

test :: Int -> IO ()
test n = print (n * n)

testCapture n = do
  (stdout, result) <- capture (test n)
  assert (stdout == show (n*n) ++ "\n")

suite :: TestTree
suite = testGroup "Test Suite" [
  testGroup "Units" [
    testCase "Equality" $ testCapture 10
  ]
]

main :: IO ()
main = defaultMain suite
```

Type Families

MultiParam Typeclasses

Resolution of vanilla Haskell 98 typeclasses proceeds via very simple context reduction that minimizes interdependency between predicates, resolves superclasses, and reduces the types to head normal form. For example:

```
(Eq [a], Ord [a]) =>> [a]
==> Ord a =>> [a]
```

If a single parameter typeclass expresses a property of a type (i.e. it’s in a class or not in class) then a multiparameter typeclass expresses relationships between types. For example if we wanted to express the relation a type can be converted to another type we might use a class like:
{-# LANGUAGE MultiParamTypeClasses #-}

import Data.Char

class Convertible a b where
 convert :: a -> b

instance Convertible Int Integer where
 convert = toInteger

instance Convertible Int Char where
 convert = chr

instance Convertible Char Int where
 convert = ord

Of course now our instances for Convertible Int are not unique anymore, so
there no longer exists a nice procedure for determining the inferred type of b
from just a. To remedy this let’s add a functional dependency a -> b, which
tells GHC that an instance a uniquely determines the instance that b can be. So
we’ll see that our two instances relating Int to both Integer and Char conflict.

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}

import Data.Char

class Convertible a b | a -> b where
 convert :: a -> b

instance Convertible Int Char where
 convert = chr

instance Convertible Char Int where
 convert = ord

Functional dependencies conflict between instance declarations:
 instance Convertible Int Integer
 instance Convertible Int Char

Now there’s a simpler procedure for determining instances uniquely and mul-
tiparameter typeclasses become more usable and inferable again. Effectively a
functional dependency | a -> b says that we can’t define multiple multipara-
meter typeclass instances with the same a but different b.

: convert (42 :: Int)
 'a'

150
Now let’s make things not so simple. Turning on `UndecidableInstances` loosens the constraint on context reduction that can only allow constraints of the class to become structural smaller than its head. As a result implicit computation can now occur *within the type class instance search*. Combined with a type-level representation of Peano numbers we find that we can encode basic arithmetic at the type-level.

```haskell
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

data Z

data S n

type Zero = Z

type One = S Zero

type Two = S One

type Three = S Two

type Four = S Three

zero :: Zero
zero = undefined

one :: One
one = undefined

two :: Two
two = undefined

three :: Three
three = undefined

four :: Four
four = undefined

class Eval a where
    eval :: a -> Int

instance Eval Zero where
    eval _ = 0

instance Eval n => Eval (S n) where
```
eval m = 1 + eval (prev m)

class Pred a b | a -> b where
 prev :: a -> b

instance Pred Zero Zero where
 prev = undefined

instance Pred (S n) n where
 prev = undefined

class Add a b c | a b -> c where
 add :: a -> b -> c

instance Add Zero a a where
 add = undefined

instance Add a b c => Add (S a) b (S c) where
 add = undefined

f :: Three
f = add one two

g :: S (S (S (S Z)))
g = add two two

h :: Int
h = eval (add three four)

If the typeclass contexts look similar to Prolog you’re not wrong, if one reads the contexts qualifier (=>) backwards as turnstiles :- then it’s precisely the same equations.

add(0, A, A).
add(s(A), B, s(C)) :- add(A, B, C).
pred(0, 0).
pred(S(A), A).

This is kind of abusing typeclasses and if used carelessly it can fail to terminate or overflow at compile-time. UndecidableInstances shouldn’t be turned on without careful forethought about what it implies.

<interactive>:1:1:
 Context reduction stack overflow; size = 201
Type Families

Type families allows us to write functions in the type domain which take types as arguments which can yield either types or values indexed on their arguments which are evaluated at compile-time in during typechecking. Type families come in two varieties: data families and type synonym families.

- type families are named function on types
- data families are type-indexed data types

First let’s look at type synonym families, there are two equivalent syntactic ways of constructing them. Either as associated type families declared within a typeclass or as standalone declarations at the toplevel. The following forms are semantically equivalent, although the unassociated form is strictly more general:

```haskell
-- (1) Unassociated form
type family Rep a

type instance Rep Int = Char
type instance Rep Char = Int

classConvertible a where
    convert :: a -> Rep a

instance Convertible Int where
    convert = chr

instance Convertible Char where
    convert = ord
```

```haskell
-- (2) Associated form

classConvertible a where
    type Rep a
    convert :: a -> Rep a

instance Convertible Int where
    type Rep Int = Char
    convert = chr

instance Convertible Char where
    type Rep Char = Int
    convert = ord
```

Using the same example we used for multiparameter + functional dependencies illustration we see that there is a direct translation between the type family approach and functional dependencies. These two approaches have the same expressive power.
An associated type family can be queried using the \texttt{:kind!} command in GHCi:

\begin{verbatim}
:kind! Rep Int
Rep Int :: *
 = Char
:kind! Rep Char
Rep Char :: *
 = Int
\end{verbatim}

\textit{Data families} on the other hand allow us to create new type parameterized data constructors. Normally we can only define typeclasses functions whose behavior results in a uniform result which is purely a result of the typeclasses arguments. With data families we can allow specialized behavior indexed on the type.

For example if we wanted to create more complicated vector structures (bit-masked vectors, vectors of tuples, …) that exposed a uniform API but internally handled the differences in their data layout we can use data families to accomplish this:

\begin{verbatim}
{-# LANGUAGE TypeFamilies #-}
import qualified Data.Vector.Unboxed as V

data family Array a

data instance Array Int = IArray (V.Vector Int)
data instance Array Bool = BArray (V.Vector Bool)
data instance Array (a,b) = PArray (Array a) (Array b)
data instance Array (Maybe a) = MArray (V.Vector Bool) (Array a)

class IArray a where
 index :: Array a -> Int -> a
instance IArray Int where
 index (IArray xs) i = xs V.!(i)
instance IArray Bool where
 index (BArray xs) i = xs V.!(i)

-- Vector of pairs
instance (IArray a, IArray b) => IArray (a, b) where
 index (PArray xs ys) i = (index xs i, index ys i)

-- Vector of missing values
instance (IArray a) => IArray (Maybe a) where
 index (MArray bm xs) i =
 case bm V.!(i) of
 True -> Nothing
 False -> Just $ index xs i
\end{verbatim}
Injectivity

The type level functions defined by type-families are not necessarily injective, the function may map two distinct input types to the same output type. This differs from the behavior of type constructors (which are also type-level functions) which are injective.

For example for the constructor Maybe, \(\text{Maybe } t_1 = \text{Maybe } t_2 \) implies that \(t_1 = t_2 \).

```haskell
data Maybe a = Nothing | Just a
-- Maybe a ~ Maybe b implies a ~ b

type instance F Int = Bool
type instance F Char = Bool
-- F a ~ F b does not imply a ~ b, in general
```

Roles

This is an advanced section, and is not typically necessary to write Haskell.

Roles are a further level of specification for type variables parameters of datatypes.

- nominal
- representational
- phantom

They were added to the language to address a rather nasty and long-standing bug around the correspondence between a newtype and its runtime representation. The fundamental distinction that roles introduce is there are two notions of type equality. Two types are nominally equal when they have the same name. This is the usual equality in Haskell or Core. Two types are representationally equal when they have the same representation. (If a type is higher_kind, all nominally equal instantiations lead to representationally equal types.)

- nominal - Two types are the same.
- representational - Two types have the same runtime representation.

```haskell
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Age = MkAge { unAge :: Int }

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool
```
class Boom a where
 boom :: a -> Inspect a

instance Boom Int where
 boom = (== 0)

deriving instance Boom Age

-- GHC 7.6.3 exhibits undefined behavior
failure = boom (MkAge 3)
-- -6341068275333450897

Roles are normally inferred automatically, but with the RoleAnnotations extension they can be manually annotated. Except in rare cases this should not be necessary although it is helpful to know what is going on under the hood.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RoleAnnotations #-}

data Nat = Zero | Suc Nat

type role Vec nominal representational
data Vec :: Nat -> * -> * where
 Nil :: Vec Zero a
 (:*) :: a -> Vec n a -> Vec (Suc n) a

type role App representational nominal
data App (f :: k -> *) (a :: k) = App (f a)

type role Mu nominal nominal
data Mu (f :: (k -> *) -> k -> *) (a :: k) = Roll (f (Mu f) a)

type role Proxy phantom
data Proxy (a :: k) = Proxy

See:
 • Roles
 • Roles: A New Feature of GHC
Monotraversable

Using type families, mono-traversable generalizes the notion of Functor, Foldable, and Traversable to include both monomorphic and polymorphic types.

\[
omap :: \text{MonoFunctor mono} \Rightarrow (\text{Element mono} \rightarrow \text{Element mono}) \rightarrow \text{mono} \rightarrow \text{mono}\
\]

\[
\text{otraverse} :: (\text{Applicative f, MonoTraversable mono})
\Rightarrow (\text{Element mono} \rightarrow f (\text{Element mono})) \rightarrow \text{mono} \rightarrow f \text{ mono}\
\]

\[
\text{ofoldMap} :: (\text{Monoid m, MonoFoldable mono})
\Rightarrow (\text{Element mono} \rightarrow m) \rightarrow \text{mono} \rightarrow m\
\]

\[
\text{ofoldl'} :: \text{MonoFoldable mono}
\Rightarrow (\text{a} \rightarrow \text{Element mono} \rightarrow \text{a}) \rightarrow \text{a} \rightarrow \text{mono} \rightarrow \text{a}\
\]

\[
\text{ofoldr} :: \text{MonoFoldable mono}
\Rightarrow (\text{Element mono} \rightarrow \text{b} \rightarrow \text{b}) \rightarrow \text{b} \rightarrow \text{mono} \rightarrow \text{b}\
\]

For example the text type normally does not admit any of these type-classes since, but now we can write down the instances that model the interface of Foldable and Traversable.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE OverloadedStrings #-}

\begin{verbatim}
import Data.Text
import Data.Char
import Data.Monoid
import Data.MonoTraversable
import Control.Applicative

bs :: Text
bs = "Hello Haskell."

shift :: Text
shift = omap (chr . (+1) . ord) bs
 -- "Ifmmp!Ibtlfmm/"

backwards :: [Char]
backwards = ofoldl' (flip ()) Nothing bs
 -- ".lleksaH olleH"
\end{verbatim}

\begin{verbatim}
data MyMonoType = MNil | MCons Int MyMonoType deriving Show

instance Element MyMonoType = Int

instance MonoFunctor MyMonoType where
\end{verbatim}
omap \(f \) \(M\text{Nil} = M\text{Nil} \)
omap \(f \) \((\text{MCons} \; x \; xs) = f \; x \; \text{`MCons`} \; \text{omap} \; f \; xs \)

instance MonoFoldable MyMonoType where
 ofoldMap \(f \) = ofoldr (mappend . \(f \)) \(\text{mempty} \)
ofoldr = mfoldr
 ofoldl' = mfoldl'
ofoldr1Ex \(f \) = ofoldr1Ex \(f \) . \text{mtoList}
ofoldl1Ex' \(f \) = ofoldl1Ex' \(f \) . \text{mtoList}

instance MonoTraversable MyMonoType where
 omapM \(f \; xs \) = mapM \(f \) (\text{mtoList} \; xs) >>= \text{return} . \text{mfromList}
 otraverse \(f \) = ofoldr acons (pure \(M\text{Nil} \))
 where acons \(x \; ys \) = \(\text{MCons} \; \langle \$$ \rangle \; f \; x \; \langle \$$ \rangle \; ys \)

\(\text{mtoList} :: \) MyMonoType \(\rightarrow \) \([\text{Int}]\)
\(\text{mtoList} \; (\text{MNil}) = [] \)
\(\text{mtoList} \; (\text{MCons} \; x \; xs) = x : (\text{mtoList} \; xs) \)

\(\text{mfromList} :: \) \([\text{Int}]\) \(\rightarrow \) MyMonoType
\(\text{mfromList} \; [] = \text{MNil} \)
\(\text{mfromList} \; (x:xs) = \text{MCons} \; x \; (\text{mfromList} \; xs) \)

\(\text{mfoldr} :: \) \((\text{Int} \rightarrow a \rightarrow a) \rightarrow a \rightarrow \text{MyMonoType} \rightarrow a \)
\(\text{mfoldr} \; f \; z \; \text{MNil} = z \)
\(\text{mfoldr} \; f \; z \; (\text{MCons} \; x \; xs) = f \; x \; (\text{mfoldr} \; f \; z \; xs) \)

\(\text{mfoldl'} :: \) \((a \rightarrow \text{Int} \rightarrow a) \rightarrow a \rightarrow \text{a} \rightarrow \text{MyMonoType} \rightarrow a \)
\(\text{mfoldl'} \; f \; z \; \text{MNil} = z \)
\(\text{mfoldl'} \; f \; z \; (\text{MCons} \; x \; xs) = \text{let} \; z' = z \; \text{`f`} \; x \)
\(\text{in} \; \text{seq} \; z' \; \text{$_{}$} \; \text{mfoldl'} \; f \; z' \; xs \)

ex1 :: Int
ex1 = mfoldl' \((+)\) \(0\) (mfromList \([1..25])\)

ex2 :: MyMonoType
ex2 = omap \((+1)\) (mfromList \([1..25])\)

See: From Semigroups to Monads

NonEmpty

Rather than having degenerate (and often partial) cases of many of the Prelude functions to accommodate the null case of lists, it is sometimes preferable to statically enforce empty lists from even being constructed as an inhabitant of a
type.

\texttt{infixr 5 :|, <|}
\texttt{data NonEmpty a = a :| [a]}

\texttt{head :: NonEmpty a -> a}
\texttt{toList :: NonEmpty a -> [a]}
\texttt{fromList :: [a] -> NonEmpty a}

\texttt{head :: NonEmpty a -> a}
\texttt{head ~(a :| _)} = a

\texttt{import Data.List.NonEmpty}
\texttt{import Prelude hiding (head, tail, foldl1)}
\texttt{import Data.Foldable (foldl1)}

\texttt{a :: NonEmpty Integer}
\texttt{a = fromList [1,2,3]}
\texttt{-- 1 :| [2,3]}

\texttt{b :: NonEmpty Integer}
\texttt{b = 1 :| [2,3]}
\texttt{-- 1 :| [2,3]}

\texttt{c :: NonEmpty Integer}
\texttt{c = fromList []}
\texttt{-- *** Exception: NonEmpty.fromList: empty list}

\texttt{d :: Integer}
\texttt{d = foldl1 (+) $ fromList [1..100]}
\texttt{-- 5050}

\textbf{Overloaded Lists}

In GHC 7.8 \texttt{-XOverloadedLists} can be used to avoid the extraneous \texttt{fromList} and \texttt{toList} conversions.

\textbf{Manual Proofs}

This is an advanced section, and is not typically necessary to write Haskell.

One of most deep results in computer science, the Curry–Howard correspondence, is the relation that logical propositions can be modeled by types and instantiating those types constitute proofs of these propositions. Programs are proofs and proofs are programs.
<table>
<thead>
<tr>
<th>Types</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>proposition</td>
</tr>
<tr>
<td>a : A</td>
<td>proof</td>
</tr>
<tr>
<td>B(x)</td>
<td>predicate</td>
</tr>
<tr>
<td>Void</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>A + B</td>
<td>A B</td>
</tr>
<tr>
<td>A × B</td>
<td>A B</td>
</tr>
<tr>
<td>A \rightarrow B</td>
<td>A B</td>
</tr>
</tbody>
</table>

In dependently typed languages we can exploit this result to its full extent, in Haskell we don’t have the strength that dependent types provide but can still prove trivial results. For example, now we can model a type level function for addition and provide a small proof that zero is an additive identity.

P 0 [base step]
n. P n → P (1+n) [inductive step]
--
n. P(n)

Axiom 1: a + 0 = a
Axiom 2: a + suc b = suc (a + b)

\[0 + suc a = suc (0 + a) \] [by Axiom 2]
\[= suc a \] [Induction hypothesis]

Translated into Haskell our axioms are simply type definitions and recursing over the inductive datatype constitutes the inductive step of our proof.

```haskell
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeOperators #-}

data Z
data S n

data SNat n where
  Zero :: SNat Z
  Succ :: SNat n \rightarrow SNat (S n)

data Eq1 a b where
  Refl :: Eq1 a a

type family Add m n
```

160
type instance Add Z n = n
type instance Add (S m) n = S (Add m n)

add :: SNat n -> SNat m -> SNat (Add n m)
add Zero m = m
add (Succ n) m = Succ (add n m)

cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- n. 0 + suc n = suc n
plus_suc :: forall n. SNat n
 -> Eql (Add Z (S n)) (S n)
plus_suc Zero = Refl
plus_suc (Succ n) = cong (plus_suc n)

-- n. 0 + n = n
plus_zero :: forall n. SNat n
 -> Eql (Add Z n) n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

Using the TypeOperators extension we can also use infix notation at the type-level.

data a :~: b where
 Refl :: a :~: a

cong :: a :~: b -> (f a) :~: (f b)
cong Refl = Refl

type family (n :: Nat) :+: (m :: Nat) :: Nat
type instance Zero :+: m = m
type instance (Succ n) :+: m = Succ (n :+: m)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+: (S m)) :+: (S (n :+: m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

Constraint Kinds

This is an advanced section, and is not typically necessary to write Haskell.

GHC’s implementation also exposes the predicates that bound quantifiers in
Haskell as types themselves, with the -XConstraintKinds extension enabled.
Using this extension we work with constraints as first class types.
Num :: * -> Constraint
Odd :: * -> Constraint

type T1 a = (Num a, Ord a)
The empty constraint set is indicated by () :: Constraint.

For a contrived example if we wanted to create a generic Sized class that carried
with it constraints on the elements of the container in question we could achieve
this quite simply using type families.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.Exts (Constraint)
import Data.Hashable
import Data.HashSet

type family Con a :: Constraint
type instance Con [a] = (Ord a, Eq a)
type instance Con (HashSet a) = (Hashable a)

class Sized a where
gsize :: Con a => a -> Int

instance Sized [a] where
gsize = length

instance Sized (HashSet a) where
gsize = size

One use-case of this is to capture the typeclass dictionary constrained by a
function and reify it as a value.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}

import GHC.Exts (Constraint)

data Dict :: Constraint -> * where
 Dict :: (c) => Dict c

dShow :: Dict (Show a) -> a -> String
dShow Dict x = show x

dEqNum :: Dict (Eq a, Num a) -> a -> Bool
dEqNum Dict x = x == 0
TypeFamilyDependencies

Type families historically have not been injective, i.e. they are not guaranteed to maps distinct elements of its arguments to the same element of its result. The syntax is similar to the multiparameter typeclass functional dependencies in that the resulting type is uniquely determined by a set of the type families parameters.

{-# LANGUAGE XTypeFamilyDependencies #-}

type family F a b c = (result :: k) | result -> a b c
type instance F Int Char Bool = Bool
type instance F Char Bool Int = Int
type instance F Bool Int Char = Char

See:
- Injective type families for Haskell

Promotion

Higher Kinded Types

What are higher kinded types?

The kind system in Haskell is unique by contrast with most other languages in that it allows datatypes to be constructed which take types and type constructor to other types. Such a system is said to support higher kinded types.

All kind annotations in Haskell necessarily result in a kind \(\star \) although any terms to the left may be higher-kindled \(\star \rightarrow \star \).

The common example is the Monad which has kind \(\star \rightarrow \star \). But we have also seen this higher-kindness in free monads.

data Free f a where
 Pure :: a -> Free f a
 Free :: f (Free f a) -> Free f a
data Cofree f a where
 Cofree :: a -> f (Cofree f a) -> Cofree f a
Free :: (* -> *) -> * -> *
Cofree :: (* -> *) -> * -> *

For instance Cofree Maybe a for some monokinded type a models a non-empty
list with Maybe :: * -> *.

-- Cofree Maybe a is a non-empty list
testCofree :: Cofree Maybe Int
testCofree = (Cofree 1 (Just (Cofree 2 Nothing)))

Kind Polymorphism

This is an advanced section, knowledge of kind polymorphism is not typically
necessary to write Haskell.

The regular value level function which takes a function and applies it to an
argument is universally generalized over in the usual Hindley-Milner way.

app :: forall a b. (a -> b) -> a -> b
app f a = f a

But when we do the same thing at the type-level we see we lose information
about the polymorphism of the constructor applied.

data TApp :: (* -> *) -> * -> *
data TApp f a = MkTApp f a

Turning on -XPolyKinds allows polymorphic variables at the kind level as well.

data Mu f a = Roll (f (Mu f) a)

Using the polykinded Proxy type allows us to write down type class functions
over constructors of arbitrary kind arity.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
data Proxy a = Proxy
data Rep = Rep

class PolyClass a where
 foo :: Proxy a -> Rep
 foo = const Rep

-- () :: *
-- [] :: * -> *
-- Either :: * -> * -> *

instance PolyClass ()
instance PolyClass []
instance PolyClass Either

For example we can write down the polymorphic $S\ K$ combinators at the type level now.

{-# LANGUAGE PolyKinds #-}

newtype I (a :: *) = I a
newtype K (a :: *) (b :: k) = K a
newtype Flip (f :: k1 -> k2 -> *) (x :: k2) (y :: k1) = Flip (f y x)

unI :: I a -> a
unI (I x) = x

unK :: K a b -> a
unK (K x) = x

unFlip :: Flip f x y -> f y x
unFlip (Flip x) = x

Data Kinds

This is an advanced section, knowledge of kind data kinds is not typically necessary to write Haskell.

The -XDataKinds extension allows us to use refer to constructors at the value level and the type level. Consider a simple sum type:

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: a -> S a b
-- R :: b -> S a b

165
With the extension enabled we see that our type constructors are now automatically promoted so that \(L \) or \(R \) can be viewed as both a data constructor of the type \(S \) or as the type \(L \) with kind \(S \).

```
{-# LANGUAGE DataKinds #-}

data \( S \ a \ b \) = \( L \ a \) | \( R \ b \)
```

```
-- \( S :: * \rightarrow * \rightarrow * \)
-- \( L :: * \rightarrow S * * \)
-- \( R :: * \rightarrow S * * \)
```

Promoted data constructors can referred to in type signatures by prefixing them with a single quote. Also of importance is that these promoted constructors are not exported with a module by default, but type synonym instances can be created for the ticked promoted types and exported directly.

```
data Foo = Bar | Baz
type Bar = 'Bar
type Baz = 'Baz
```

Combining this with type families we see we can write meaningful, meaningful type-level functions by lifting types to the kind level.

```
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

import Prelude hiding (Bool(..))

data Bool = True | False

type family Not (a :: Bool) :: Bool

    type instance Not True = False
    type instance Not False = True

false :: Not True ~ Not False => a
false = undefined

true :: Not False ~ True => a
true = undefined
```

```
-- Fails at compile time.
-- Couldn't match type 'False with 'True
invalid :: Not True ~ True => a
invalid = undefined
```
Size-Indexed Vectors

Using this new structure we can create a `Vec` type which is parameterized by its length as well as its element type now that we have a kind language rich enough to encode the successor type in the kind signature of the generalized algebraic datatype.

```haskell
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Nat = Z | S Nat deriving (Eq, Show)

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three
type Five = S Four

data Vec :: Nat -> * -> * where
  Nil :: Vec Z a
  Cons :: a -> Vec n a -> Vec (S n) a

instance Show a => Show (Vec n a) where
  show Nil = "Nil"
  show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

class FromList n where
  fromList :: [a] -> Vec n a

instance FromList Z where
  fromList [] = Nil

instance FromList n => FromList (S n) where
  fromList (x:xs) = Cons x $ fromList xs

lengthVec :: Vec n a -> Nat
lengthVec Nil = Z
lengthVec (Cons x xs) = S (lengthVec xs)

zipVec :: Vec n a -> Vec n b -> Vec n (a,b)
zipVec Nil Nil = Nil
```

167
zipVec (Cons x xs) (Cons y ys) = Cons (x,y) (zipVec xs ys)

vec4 :: Vec Four Int
vec4 = fromList [0, 1, 2, 3]

vec5 :: Vec Five Int
vec5 = fromList [0, 1, 2, 3, 4]

element1 :: Nat
element1 = lengthVec vec4
-- S (S (S (S Z)))

element2 :: Vec Four (Int, Int)
element2 = zipVec vec4 vec4
-- Cons (0,0) (Cons (1,1) (Cons (2,2) (Cons (3,3) (Nil))))

So now if we try to zip two Vec types with the wrong shape then we get an error at compile-time about the off-by-one error.

element2 = zipVec vec4 vec5
-- Couldn't match type 'S 'Z with 'Z
-- Expected type: Vec Four Int
-- Actual type: Vec Five Int

The same technique we can use to create a container which is statically indexed by an empty or non-empty flag, such that if we try to take the head of an empty list we will get a compile-time error, or stated equivalently we have an obligation to prove to the compiler that the argument we hand to the head function is non-empty.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Size = Empty | NonEmpty

data List a b where
 Nil :: List Empty a
 Cons :: a -> List b a -> List NonEmpty a

head' :: List NonEmpty a -> a
head' (Cons x _) = x

element1 :: Int
element1 = head' (1 `Cons` (2 `Cons` Nil))
-- Cannot match type Empty with NonEmpty
example2 :: Int
example2 = head' Nil

Couldn't match type None with Many
Expected type: List NonEmpty Int
Actual type: List Empty Int

See:
 • Giving Haskell a Promotion

Typelevel Numbers

GHC's type literals can also be used in place of explicit Peano arithmetic.

GHC 7.6 is very conservative about performing reduction, GHC 7.8 is much less so and will can solve many typelevel constraints involving natural numbers but sometimes still needs a little coaxing.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Vec :: Nat -> * -> * where
 Nil :: Vec 0 a
 Cons :: a -> Vec n a -> Vec (1 + n) a

-- GHC 7.6 will not reduce
-- vec3 :: Vec (1 + (1 + (1 + 0))) Int

vec3 :: Vec 3 Int
vec3 = 0 `Cons` (1 `Cons` (2 `Cons` Nil))

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}

import GHC.TypeLits
import Data.Type.Equality

data Foo :: Nat -> * where
Small :: (n <= 2) => Foo n
Big :: (3 <= n) => Foo n

Empty :: ((n == 0) - True) => Foo n
NonEmpty :: ((n == 0) - False) => Foo n

big :: Foo 10
big = Big

small :: Foo 2
small = Small

empty :: Foo 0
empty = Empty

nonempty :: Foo 3
nonempty = NonEmpty

See: Type-Level Literals

Typelevel Strings

Custom Errors

As of GHC 8.0 we have the capacity to provide custom type error using type families. The messages themselves hook into GHC and expressed using the small datatype found in GHC.TypeLits

data ErrorMessage where
 Text :: Symbol -> ErrorMessage
 ShowType :: t -> ErrorMessage

 -- Put two messages next to each other
 (::<::) :: ErrorMessage -> ErrorMessage -> ErrorMessage

 -- Put two messages on top of each other
 (::$:::) :: ErrorMessage -> ErrorMessage -> ErrorMessage

If one of these expressions is found in the signature of an expression GHC reports an error message of the form:

eexample.hs:1:1: error:
 • My custom error message line 1.
 • My custom error message line 2.
 • In the expression: example
 In an equation for ‘foo’: foo = ECoerce (EFloat 3) (EInt 4)
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance
 -- Error Message
TypeError (Text "Equality is not defined for functions"
:$$:
(ShowType a :<>: Text " -> " :<>: ShowType b))

 -- Instance head
=> Eq (a -> b) where (==) = undefined

 -- Fail when we try to equate two functions
example = id == id

A less contrived example would be creating a type-safe embedded DSL that enforces invariants about the semantics at the type-level. We’ve been able to do this sort of thing using GADTs and type-families for a while but the error reporting has been horrible. With 8.0 we can have type-families that emit useful type errors that reflect what actually goes wrong and integrate this inside of GHC.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

type family Coerce a b where
 Coerce Int Int = Int
 Coerce Float Float = Float
 Coerce Int Float = Float
 Coerce Float Int = TypeError (Text "Cannot cast to smaller type")

data Expr a where
 EInt :: Int -> Expr Int
 EFloat :: Float -> Expr Float
 ECoerce :: Expr b -> Expr c -> Expr (Coerce b c)

foo :: Expr Int
foo = ECoerce (EFloat 3) (EInt 4)
Type Equality

Continuing with the theme of building more elaborate proofs in Haskell, GHC 7.8 recently shipped with the Data.Type.Equality module which provides us with an extended set of type-level operations for expressing the equality of types as values, constraints, and promoted booleans.

\[-\] \(\rightarrow\) :: \(k \rightarrow k \rightarrow\) Constraint
\[==\] :: \(k \rightarrow k \rightarrow\) Bool
\[<\] :: Nat \(\rightarrow\) Nat \(\rightarrow\) Constraint
\[<\?]\] :: Nat \(\rightarrow\) Nat \(\rightarrow\) Bool
\[\times\] :: Nat \(\rightarrow\) Nat \(\rightarrow\) Nat
\[\div\] :: Nat \(\rightarrow\) Nat \(\rightarrow\) Nat
\[\div\] :: Nat \(\rightarrow\) Nat \(\rightarrow\) Nat
\[(:\sim:)\] :: \(k \rightarrow k \rightarrow\) *
Refl :: a1 \(\sim\) a1
sym :: (a \(\sim\) b) \(\rightarrow\) b \(\sim\) a
trans :: (a \(\sim\) b) \(\rightarrow\) (b \(\sim\) c) \(\rightarrow\) a \(\sim\) c
castWith :: (a \(\sim\) b) \(\rightarrow\) a \(\rightarrow\) b
gcastWith :: (a \(\sim\) b) \(\rightarrow\) (a \(\sim\) b \(\Rightarrow\) r) \(\rightarrow\) r

With this we have a much stronger language for writing restrictions that can be checked at a compile-time, and a mechanism that will later allow us to write more advanced proofs.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits
import Data.Type.Equality

type Not a b = ((b == a) \(\sim\) False)

restrictUnit :: Not () a \(\Rightarrow\) a \(\rightarrow\) a
restrictUnit = id

restrictChar :: Not Char a \(\Rightarrow\) a \(\rightarrow\) a
restrictChar = id

Proxies

Using kind polymorphism with phantom types allows us to express the Proxy type which is inhabited by a single constructor with no arguments but with a
polykinded phantom type variable which carries an arbitrary type.

{-# LANGUAGE PolyKinds #-}

-- / A concrete, poly-kind ed proxy type
data Proxy t = Proxy
import Data.Proxy

a :: Proxy ()
a = Proxy

b :: Proxy 3
b = Proxy

c :: Proxy "symbol"
c = Proxy

d :: Proxy Maybe
d = Proxy

e :: Proxy (Maybe ())
e = Proxy

In cases where we’d normally pass around a undefined as a witness of a type-
class dictionary, we can instead pass a Proxy object which carries the phantom
type without the need for the bottom. Using scoped type variables we can then
operate with the phantom parameter and manipulate wherever is needed.

t1 :: a
t1 = (undefined :: a)

t2 :: Proxy a
t2 Proxy :: Proxy a

Promoted Syntax

We’ve seen constructors promoted using DataKinds, but just like at the value-
level GHC also allows us some syntactic sugar for list and tuples instead of
explicit cons’ing and pair’ing. This is enabled with the -XTypeOperators exten-
sion, which introduces list syntax and tuples of arbitrary arity at the type-level.

data HList :: [*] -> * where
 HNil :: HList '[]
 HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (*,*) -> * where
 Tuple :: a -> b -> Tuple '((a,b))
Using this we can construct all variety of composite type-level objects.

```haskell
: :\text{kind} 1
1 :: \text{Nat}

: :\text{kind} "foo"
"foo" :: \text{Symbol}

: :\text{kind} [1,2,3]
[1,2,3] :: [\text{Nat}]

: :\text{kind} \text{Just} [\text{Int, Bool, Char}]
\text{Just} [\text{Int, Bool, Char}] :: \text{Maybe} [\text{*}]

: :\text{kind} '("a", \text{Int})
(,) \text{Symbol} *

: :\text{kind} [ '("a", \text{Int}), '("b", \text{Bool}) ]
[ '("a", \text{Int}), '("b", \text{Bool}) ] :: [(,) \text{Symbol} *]
```

Singleton Types

This is an advanced section, knowledge of singletons is not typically necessary to write Haskell.

A singleton type is a type with a single value inhabitant. Singleton types can be constructed in a variety of ways using GADTs or with data families.

```haskell
data instance \text{Sing} (a :: \text{Nat}) \text{where}
\text{SZ} :: \text{Sing} 'Z
\text{SS} :: \text{Sing} n \rightarrow \text{Sing} ('S n)

data instance \text{Sing} (a :: \text{Maybe} k) \text{where}
\text{SNothing} :: \text{Sing} '\text{Nothing}
\text{SJust} :: \text{Sing} x \rightarrow \text{Sing} ('\text{Just} x)

data instance \text{Sing} (a :: \text{Bool}) \text{where}
\text{STrue} :: \text{Sing} \text{True}
\text{SFalse} :: \text{Sing} \text{False}
```

Promoted Naturals

<table>
<thead>
<tr>
<th>Value-level</th>
<th>Type-level</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{SZ}</td>
<td>\text{Sing} 'Z</td>
<td>0</td>
</tr>
</tbody>
</table>

174
Singleton types are an integral part of the small cottage industry of faking dependent types in Haskell, i.e. constructing types with terms predicated upon values. Singleton types are a way of “cheating” by modeling the map between types and values as a structural property of the type.

```haskell
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.Exts (Any)
import Prelude hiding (succ)

data Nat = Z | S Nat

-- kind-indexed data family
data family Sing (a :: k)
data instance Sing (a :: Nat) where
    SZ :: Sing 'Z
    SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
    SNothing :: Sing 'Nothing
    SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
    STrue :: Sing True
    SFalse :: Sing False

data Fin (n :: Nat) where
    FZ :: Fin (S n)
    FS :: Fin n -> Fin (S n)

data Vec a n where
    Nil :: Vec a Z
    Cons :: a -> Vec a n -> Vec a (S n)

class SingI (a :: k) where
    sing :: Sing a

instance SingI Z where
    sing = SZ

instance SingI n => SingI (S n) where
    sing = SS sing

deriving instance Show Nat
deriving instance Show (SNat a)
deriving instance Show (SBool a)
deriving instance Show (Fin a)
deriving instance Show a => Show (Vec a n)

type family (m :: Nat) :+: (n :: Nat) :: Nat where
    Z :+: n = n
    S m :+: n = S (m :+: n)

type SNat (k :: Nat) = Sing k
type SBool (k :: Bool) = Sing k
type SMaybe (b :: a) (k :: Maybe a) = Sing k

size :: Vec a n -> SNat n
size Nil = SZ
size (Cons x xs) = SS (size xs)

forget :: SNat n -> Nat
forget SZ = Z
forget (SS n) = S (forget n)

natToInt :: Integral n -> Nat -> n
natToInt Z = 0
natToInt (S n) = natToInt n + 1

intToNat :: (Integral a, Ord a) -> a -> Nat
intToNat 0 = Z
intToNat n = S $ intToNat (n - 1)

sNatToInt :: Num n -> SNat x -> n
sNatToInt SZ = 0
sNatToInt (SS n) = sNatToInt n + 1

index :: Fin n -> Vec a n -> a
index FZ (Cons x _) = x
index (FS n) (Cons _ xs) = index n xs

test1 :: Fin (S (S (S Z)))
test1 = FS (FS FZ)

test2 :: Int
test2 = index FZ (1 `Cons` (2 `Cons` Nil))

test3 :: Sing (Just (S (S Z)))
test3 = SJust (SS (SS SZ))

test4 :: Sing (S (S Z))
test4 = SS (SS SZ)

-- polymorphic constructor SingI

test5 :: Sing (S (S Z))
test5 = sing

The builtin singleton types provided in GHC.TypeLits have the useful implementation that type-level values can be reflected to the value-level and back up to the type-level, albeit under an existential.

someNatVal :: Integer -> Maybe SomeNat
someSymbolVal :: String -> SomeSymbol

natVal :: KnownNat n -> proxy n -> Integer
symbolVal :: KnownSymbol n => proxy n -> String
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Data.Proxy
import GHC.TypeLits

a :: Integer
a = natVal (Proxy :: Proxy 1)
     -- 1

b :: String
b = symbolVal (Proxy :: Proxy "foo")
     -- "foo"

c :: Integer
c = natVal (Proxy :: Proxy (2 + 3))
     -- 5

Closed Type Families

In the type families we’ve used so far (called open type families) there is no
notion of ordering of the equations involved in the type-level function. The
type family can be extended at any point in the code resolution simply proceeds
sequentially through the available definitions. Closed type-families allow an
alternative declaration that allows for a base case for the resolution allowing us
to actually write recursive functions over types.

For example consider if we wanted to write a function which counts the argu-
ments in the type of a function and reifies at the value-level.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.TypeLits

type family Count (f :: * :: Nat where
    Count (a -> b) = 1 + (Count b)
    Count x = 1

    type Fn1 = Int -> Int
    type Fn2 = Int -> Int -> Int -> Int
fn1 :: Integer
fn1 = natVal (Proxy :: Proxy (Count Fn1))
-- 2

fn2 :: Integer
fn2 = natVal (Proxy :: Proxy (Count Fn2))
-- 4

The variety of functions we can now write down are rather remarkable, allowing us to write meaningful logic at the type level.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

-- Type-level functions over type-level lists.

type family Reverse (xs :: [k]) :: [k] where
    Reverse '[] = '[]
    Reverse xs = Rev xs '[]

type family Rev (xs :: [k]) (ys :: [k]) :: [k] where
    Rev '[] i = i
    Rev (x ': xs) i = Rev xs (x ': i)

type family Length (as :: [k]) :: Nat where
    Length '[] = 0
    Length (x ': xs) = 1 + Length xs

type family If (p :: Bool) (a :: k) (b :: k) :: k where
    If True a b = a
    If False a b = b

type family Concat (as :: [k]) (bs :: [k]) :: [k] where
    Concat a '[] = a
    Concat '[] b = b
    Concat (a ': as) bs = a ': Concat as bs

type family Map (f :: a -> b) (as :: [a]) :: [b] where
Map f '[] = '[]
Map f (x ': xs) = f x ': Map f xs

type family Sum (xs :: [Nat]) :: Nat where
  Sum '[] = 0
  Sum (x ': xs) = x + Sum xs

ex1 :: Reverse [1,2,3] ~ [3,2,1] => Proxy a
ex1 = Proxy

ex2 :: Length [1,2,3] ~ 3 => Proxy a
ex2 = Proxy

ex3 :: (Length [1,2,3]) ~ (Length (Reverse [1,2,3])) => Proxy a
ex3 = Proxy

-- Reflecting type level computations back to the value level.
ex4 :: Integer
ex4 = natVal (Proxy :: Proxy (Length (Concat [1,2,3] [4,5,6])))
  -- 6
ex5 :: Integer
ex5 = natVal (Proxy :: Proxy (Sum [1,2,3]))
  -- 6

-- Couldn't match type '2' with '1'
ex6 :: Reverse [1,2,3] ~ [3,1,2] => Proxy a
ex6 = Proxy

The results of type family functions need not necessarily be kinded as (†) either. For example using Nat or Constraint is permitted.

type family Elem (a :: k) (bs :: [k]) :: Constraint where
  Elem a (a ': bs) = (() :: Constraint)
  Elem a (b ': bs) = a `Elem` bs

type family Sum (ns :: [Nat]) :: Nat where
  Sum '[] = 0
  Sum (n ': ns) = n + Sum ns

Kind Indexed Type Families

This is an advanced section, and is not typically necessary to write Haskell. Just as typeclasses are normally indexed on types, type families can also be indexed on kinds with the kinds given as explicit kind signatures on type variables.
type family \( (a :: k) == (b :: k) :: \text{Bool} \)
type instance \( a == b = \text{EqStar} \ a \ b \)
type instance \( a == b = \text{EqArrow} \ a \ b \)
type instance \( a == b = \text{EqBool} \ a \ b \)

\[
\begin{align*}
\text{type family } \text{EqStar} \ (a :: *) (b :: *) \text{ where} \\
\text{EqStar} \ a \ a &= \text{True} \\
\text{EqStar} \ a \ b &= \text{False}
\end{align*}
\]

\[
\begin{align*}
\text{type family } \text{EqArrow} \ (a :: k1 \rightarrow k2) (b :: k1 \rightarrow k2) \text{ where} \\
\text{EqArrow} \ a \ a &= \text{True} \\
\text{EqArrow} \ a \ b &= \text{False}
\end{align*}
\]

\[
\begin{align*}
\text{type family } \text{EqBool} \ a \ b \text{ where} \\
\text{EqBool} \ \text{True} \ \text{True} &= \text{True} \\
\text{EqBool} \ \text{False} \ \text{False} &= \text{True} \\
\text{EqBool} \ a \ b &= \text{False}
\end{align*}
\]

\[
\begin{align*}
\text{type family } \text{EqList} \ a \ b \text{ where} \\
\text{EqList} \ '[] '[] &= \text{True} \\
\text{EqList} \ (\text{h1} ':\ t1) (\text{h2} ':\ t2) &= (\text{h1} == \text{h2}) \&\& (t1 == t2) \\
\text{EqList} \ a \ b &= \text{False}
\end{align*}
\]

\[
\begin{align*}
\text{type family } a \&\& b \text{ where} \\
\text{True} \&\& \text{True} &= \text{True} \\
\text{a} \&\& \text{a} &= \text{False}
\end{align*}
\]

Promoted Symbols

\[
\begin{align*}
\{-\# \text{ LANGUAGE DataKinds} \-\} \\
\{-\# \text{ LANGUAGE PolyKinds} \-\} \\
\{-\# \text{ LANGUAGE FlexibleInstances} \-\} \\
\{-\# \text{ LANGUAGE FlexibleContexts} \-\} \\
\{-\# \text{ LANGUAGE FunctionalDependencies} \-\} \\
\{-\# \text{ LANGUAGE TypeOperators} \-\} \\
\{-\# \text{ LANGUAGE ConstraintKinds} \-\}
\end{align*}
\]

import GHC.TypeLits
import Data.Type.Equality

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
  from :: a -> Label l -> b
data Point2D = Point2 Double Double deriving Show
data Point3D = Point3 Double Double Double deriving Show

instance Has Point2D "x" Double where
  from (Point2 x _) _ = x

instance Has Point2D "y" Double where
  from (Point2 _ y) _ = y

instance Has Point3D "x" Double where
  from (Point3 x _ _) _ = x

instance Has Point3D "y" Double where
  from (Point3 _ y _) _ = y

instance Has Point3D "z" Double where
  from (Point3 _ _ z) _ = z

infixl 6 #

(#) :: a -> (a -> b) -> b
(#) = flip ($)

_x :: Has a "x" b => a -> b
_x pnt = from pnt (Get :: Label "x")

_y :: Has a "y" b => a -> b
_y pnt = from pnt (Get :: Label "y")

_z :: Has a "z" b => a -> b
_z pnt = from pnt (Get :: Label "z")

type Point a r = (Has a "x" r, Has a "y" r)
distance :: (Point a r, Point b r, Floating r) => a -> b -> r
distance p1 p2 = sqrt (d1^2 + d2^2)
  where
    d1 = (p1 # _x) + (p1 # _y)
    d2 = (p2 # _x) + (p2 # _y)

main :: IO ()
main = do
  print $(Point2 10 20) # _x
-- Fails with: No instance for (HasPoint2D "z" a0)
-- print $(Point2 10 20) # _z

print $(Point3 10 20 30) # _x
print $(Point3 10 20 30) # _z

print $ distance (Point2 1 3) (Point2 2 7)
print $ distance (Point2 1 3) (Point3 2 7 4)
print $ distance (Point3 1 3 5) (Point3 2 7 3)

Since record is fundamentally no different from the tuple we can also do the
same kind of construction over record field names.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits

newtype Field (n :: Symbol) v = Field { unField :: v }
  deriving Show

data Person1 = Person1
  { _age :: Field "age" Int
  , _name :: Field "name" String
  }

data Person2 = Person2
  { _age' :: Field "age" Int
  , _name' :: Field "name" String
  , _lib' :: Field "lib" String
  }

  deriving instance Show Person1
  deriving instance Show Person2

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where

183
from :: a -> Label l -> b

instance Has Person1 "age" Int where
  from (Person1 a _) _ = unField a

instance Has Person1 "name" String where
  from (Person1 _ a) _ = unField a

instance Has Person2 "age" Int where
  from (Person2 a _ _) _ = unField a

instance Has Person2 "name" String where
  from (Person2 _ a _) _ = unField a

age :: Has a "age" b => a -> b
age pnt = from pnt (Get :: Label "age")

name :: Has a "name" b => a -> b
name pnt = from pnt (Get :: Label "name")

-- Parameterized constraint kind for "Simon-ness" of a record.
type Simon a = (Has a "name" String, Has a "age" Int)

spj :: Person1
spj = Person1 (Field 56) (Field "Simon Peyton Jones")

smarlow :: Person2
smarlow = Person2 (Field 38) (Field "Simon Marlow") (Field "rts")

catNames :: (Simon a, Simon b) => a -> b -> String
catNames a b = name a ++ name b

addAges :: (Simon a, Simon b) => a -> b -> Int
addAges a b = age a + age b

names :: String
names = name smarlow ++ "," ++ name spj
-- "Simon Marlow,Simon Peyton Jones"

ages :: Int
ages = age spj + age smarlow
-- 94

Notably this approach is mostly just all boilerplate class instantiation which
could be abstracted away using TemplateHaskell or a Generic deriving.

**HLists**

This is an advanced section, and is not typically necessary to write Haskell.

A heterogeneous list is a cons list whose type statically encodes the ordered types of its values.

```haskell
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}

infixr 5 :::

data HList (ts :: [*]) where
 Nil :: HList []
 (:::) :: t -> HList ts -> HList (t :: ts)

-- Take the head of a non-empty list with the first value as Bool type.
headBool :: HList (Bool :: xs) -> Bool
headBool hlist = case hlist of
 (a :::_) -> a

hlength :: HList x -> Int
hlength Nil = 0
hlength (_ :::_ b) = 1 + (hlength b)

tuple :: (Bool, (String, (Double, ()))))
tuple = (True, ("foo", (3.14, ()))))

hlist :: HList '[Bool, String , Double , ()]
hlist = True ::: "foo" ::: 3.14 ::: () ::: Nil
```

Of course this immediately begs the question of how to print such a list out to a string in the presence of type-heterogeneity. In this case we can use type-families combined with constraint kinds to apply the Show over the HLists parameters to generate the aggregate constraint that all types in the HList are Showable, and then derive the Show instance.

```haskell
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
```
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.Exts (Constraint)

infixr 5 :

data HList (ts :: [*]) where
  Nil :: HList '[]
  (:::) :: t -> HList ts -> HList (t ': ts)

  type family Map (f :: a -> b) (xs :: [a]) :: [b]
  type instance Map f '[] = '[]
  type instance Map f (x ': xs) = f x ': Map f xs

  type family Constraints (cs :: [Constraint]) :: Constraint
  type instance Constraints '[] = ()
  type instance Constraints (c ': cs) = (c, Constraints cs)

  type AllHave (c :: k -> Constraint) (xs :: [k]) = Constraints (Map c xs)

  showHList :: AllHave Show xs => HList xs -> [String]
  showHList Nil = []
  showHList (x ::: xs) = (show x) : showHList xs

  instance AllHave Show xs => Show (HList xs) where
    show = show . showHList

  example1 :: HList '[Bool, String, Double, ()]
  example1 = True ::: "foo" ::: 3.14 ::: () ::: Nil
     -- ["True","foo","3.14","]"

Typelevel Dictionaries

Much of this discussion of promotion begs the question whether we can create
data structures at the type-level to store information at compile-time. For
example a type-level association list can be used to model a map between type-
level symbols and any other promotable types. Together with type-families we
can write down type-level traversal and lookup functions.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

type family If (p :: Bool) (a :: k) (b :: k) :: k where
  If True  a b = a
  If False a b = b

type family Lookup (k :: a) (ls :: [(a, b)]) :: Maybe b where
  Lookup k '[] = 'Nothing
  Lookup k '((a, b) ': xs) = If (a == k) ('Just b) (Lookup k xs)

type M = [
  ('"a", 1),
  ('"b", 2),
  ('"c", 3),
  ('"d", 4)
]

type K = "a"
type (!!) m (k :: Symbol) a = (Lookup k m) - Just a

value :: Integer
value = natVal ( Proxy :: (M !! "a") a => Proxy a )

If we ask GHC to expand out the type signature we can view the explicit implementation of the type-level map lookup function.

(!!)
  :: If
      (GHC.TypeLits.EqSymbol "a" k)
      ('Just 1)
      (If
        (GHC.TypeLits.EqSymbol "b" k)
        ('Just 2)
        (If
          (GHC.TypeLits.EqSymbol "c" k)
          ('Just 3)
          (If (GHC.TypeLits.EqSymbol "d" k) ('Just 4) 'Nothing))
        ~ 'Just v =>
        Proxy k -> Proxy v

187
Advanced Proofs

This is an advanced section, and is not typically necessary to write Haskell.

Now that we have the length-indexed vector let’s go write the reverse function, how hard could it be?

So we go and write down something like this:

```haskell
reverseNaive :: forall n a. Vec a n -> Vec a n
reverseNaive xs = go Nil xs -- Error: n + 0 != n

where
 go :: Vec a m -> Vec a n -> Vec a (n + m)
 go acc Nil = acc
 go acc (Cons x xs) = go (Cons x acc) xs -- Error: n + succ m != succ (n + m)
```

Running this we find that GHC is unhappy about two lines in the code:

* Couldn’t match type ‘n’ with ‘n + 0’
  * Expected type: Vec a n
  * Actual type: Vec a (n + 0)

* Couldn’t match type (n1 + 1 + m) with 1 + (n1 + m)
  * Expected type: Vec a1 (k + m)
  * Actual type: Vec a1 (n1 + 1 + m)

As we unfold elements out of the vector we’ll end up doing a lot of type-level arithmetic over indices as we combine the subparts of the vector backwards, but as a consequence we find that GHC will run into some unification errors because it doesn’t know about basic arithmetic properties of the natural numbers. Namely that forall n. n + 0 = 0 and forall n m. n + (1 + m) = 1 + (n + m). Which of course it really shouldn’t be given that we’ve constructed a system at the type-level which intuitively models arithmetic but GHC is just a dumb compiler, it can’t automatically deduce the isomorphism between natural numbers and Peano numbers.

So at each of these call sites we now have a proof obligation to construct proof terms. Recall from our discussion of propositional equality from GADTs that we actually have such machinery to construct this now.

```haskell
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}
import Data.Type.Equality
```

188
data Nat = Z | S Nat

data SNat n where
  Zero :: SNat Z
  Succ :: SNat n -> SNat (S n)

data Vec :: * -> Nat -> * where
  Nil :: Vec a Z
  Cons :: a -> Vec a n -> Vec a (S n)

instance Show a => Show (Vec a n) where
  show Nil = "Nil"
  show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

type family (m :: Nat) :+: (n :: Nat) :: Nat where
  Z :+: n = n
  S m :+: n = S (m :+: n)

  -- (a ~ b) implies (f a ~ f b)
  cong :: a :-: b -> f a :-: f b
  cong Refl = Refl

  -- (a ~ b) implies (f a) implies (f b)
  subst :: a :-: b -> f a -> f b
  subst Refl = id

plus_zero :: forall n. SNat n -> (n :+: Z) :-: n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+: (S m)) :-: (S (n :+: m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

size :: Vec a n -> SNat n
size Nil = Zero
size (Cons _ xs) = Succ $ size xs

reverse :: forall n a. Vec a n -> Vec a n
reverse xs = subst (plus_zero (size xs)) $ go Nil xs
  where
go :: Vec a m -> Vec a k -> Vec a (k :+: m)
go acc Nil = acc
go acc (Cons x xs) = subst (plus_suc (size xs) (size acc)) $ go (Cons x acc) xs

append :: Vec a n -> Vec a m -> Vec a (n :+: m)
append (Cons x xs) ys = Cons x (append xs ys)
append Nil ys = ys

vec :: Vec Int (S (S (S Z)))
vec = 1 `Cons` (2 `Cons` (3 `Cons` Nil))

test :: Vec Int (S (S Z))
test = Main.reverse vec

One might consider whether we could avoid using the singleton trick and just use type-level natural numbers, and technically this approach should be feasible although it seems that the natural number solver in GHC 7.8 can decide some properties but not the ones needed to complete the natural number proofs for the reverse functions.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Prelude hiding (Eq)
import GHC.TypeLits
import Data.Type.Equality

type Z = 0

type family S (n :: Nat) :: Nat where
  S n = n + 1

-- Yes!
eq_zero :: Z :+: Z
eq_zero = Refl

-- Yes!
zero_plus_one :: (Z + 1) :+: (1 + Z)
zero_plus_one = Refl

-- Yes!
plus_zero :: forall n. (n + Z) :+: n
plus_zero = Refl

-- Yes!
plus_one :: forall n. (n + S Z) :+: S n
plus_one = Refl

-- No.
Caveat should be that there might be a way to do this in GHC 7.6 that I’m not aware of. In GHC 7.10 there are some planned changes to solver that should be able to resolve these issues. In particular there are plans to allow pluggable type system extensions that could outsource these kind of problems to third party SMT solvers which can solve these kind of numeric relations and return this information back to GHC’s typechecker.

As an aside this is a direct transliteration of the equivalent proof in Agda, which is accomplished via the same method but without the song and dance to get around the lack of dependent types.

```
module Vector where

infixr 10 _+_

data N : Set where
 zero : N
 suc : N → N

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

infixl 6 _+_

+ : N → N → N
0 + n = n
suc m + n = suc (m + n)

data Vec (A : Set) : N → Set where
 [] : Vec A 0
 - : {n} → A → Vec A n → Vec A (suc n)

+* : {A n m} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x xs) ++ ys = x (xs ++ ys)

infix 4 _+_

data _-_ {A : Set} (x : A) : A → Set where
 refl : x x

subst : {A : Set} → (P : A → Set) → {x y} → x y → P x → P y
subst P refl p = p
```
cong : {A B : Set} (f : A → B) → {x y : A} → x y → f x f y
cong f refl = refl

vec : {A} (k : N) → Set
vec {A} k = Vec A k

plus_zero : {n : N} → n + 0 n
plus_zero {zero} = refl
plus_zero {suc n} = cong suc plus_zero

plus_suc : {n : N} → n + (suc 0) suc n
plus_suc {zero} = refl
plus_suc {suc n} = cong suc (plus_suc {n})

reverse : {A n} → Vec A n → Vec A n
reverse [] = []
reverse {A} {suc n} (x xs) = subst vec (plus_suc {n}) (reverse xs ++ (x []))

Liquid Haskell

This is an advanced section, knowledge of LiquidHaskell is not typically necessary to write Haskell.

LiquidHaskell is an extension to GHC’s typesystem that adds the capacity for refinement types using the annotation syntax. The type signatures of functions can be checked by the external for richer type semantics than default GHC provides, including non-exhaustive patterns and complex arithemtic properties that require external SMT solvers to verify. For instance LiquidHaskell can statically verify that a function that operates over a Maybe a is always given a Just or that an arithmetic functions always yields an Int that is even positive number.

To Install LiquidHaskell in Ubuntu add the following line to your /etc/sources.list:

deb http://ppa.launchpad.net/hvr/z3/ubuntu trusty main

And then install the external SMT solver.

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys F6F88286
$ sudo apt-get install z3

Then clone the repo and build it using stack.

$ git clone --recursive git@github.com:ucsd-progsys/liquidhaskell.git
$ cd liquidhaskell
$ stack install

Ensure that $HOME/.local/bin is on your $PATH.
import Prelude hiding (mod, gcd)

{-@ mod :: a:Nat -> b:{v:Nat | 0 < v} -> {v:Nat | v < b} @-}
mod :: Int -> Int -> Int
mod a b
| a < b = a
| otherwise = mod (a - b) b

{-@ gcd :: a:Nat -> b:{v:Nat | v < a} -> Int @-}
gcd :: Int -> Int -> Int
gcd a 0 = a
gcd a b = gcd b (a `mod` b)

The module can be run through the solver using the liquid command line tool.

$ liquid example.hs
Done solving.

**** DONE: solve **************************************************

**** DONE: annotate **********************************************

**** RESULT: SAFE ***********************************************

For more extensive documentation and further use cases see the official documentation:

• Liquid Haskell Documentation

Generics

Haskell has several techniques for automatic generation of type classes for a variety of tasks that consist largely of boilerplate code generation such as:

• Pretty Printing
• Equality
• Serialization
• Ordering
• Traversal

These are achieved through several tools and techniques outlined in the next few sections:

• Typeable / Dynamic
• Scrap Your Boilerplate
• GHC.Generics
The `Typeable` class be used to create runtime type information for arbitrary types.

```haskell
valueOf :: Typeable a => a -> TypeRep
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable

data Animal = Cat | Dog deriving Typeable
data Zoo a = Zoo [a] deriving Typeable

equal :: (Typeable a, Typeable b) => a -> b -> Bool

equal a b = typeOf a == typeOf b

eexample1 :: TypeRep
eexample1 = typeOf Cat
-- Animal

eexample2 :: TypeRep
eexample2 = typeOf (Zoo [Cat, Dog])
-- Zoo Animal

eexample3 :: TypeRep
eexample3 = typeOf ((1, 6.636e-34, "foo") :: (Int, Double, String))
-- (Int,Double,[Char])

eexample4 :: Bool
eexample4 = equal False ()
-- False
```

Using the Typeable instance allows us to write down a type safe cast function which can safely use `unsafeCast` and provide a proof that the resulting type matches the input.

```haskell
cast :: (Typeable a, Typeable b) => a -> Maybe b

cast x
 | typeOf x == typeOf ret = Just ret
 | otherwise = Nothing

where
 ret = unsafeCast x
```

Of historical note is that writing our own Typeable classes is currently possible of GHC 7.6 but allows us to introduce dangerous behavior that can cause crashes,
and shouldn’t be done except by GHC itself. As of 7.8 GHC forbids handwritten Typeable instances. As of 7.10 `-XAutoDeriveDataTypeable` is enabled by default.

See: Typeable and Data in Haskell

**Dynamic**

Since we have a way of querying runtime type information we can use this machinery to implement a *Dynamic* type. This allows us to box up any monotype into a uniform type that can be passed to any function taking a Dynamic type which can then unpack the underlying value in a type-safe way.

```haskell
toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a
cast :: (Typeable a, Typeable b) => a -> Maybe b
```

```
import Data.Dynamic
import Data.Maybe

dynamicBox :: Dynamic
dynamicBox = toDyn (6.62 :: Double)
```

```haskell
example1 :: Maybe Int
example1 = fromDynamic dynamicBox
-- Nothing
```

```haskell
example2 :: Maybe Double
example2 = fromDynamic dynamicBox
-- Just 6.62
```

```haskell
example3 :: Int
example3 = fromDyn dynamicBox 0
-- 0
```

```haskell
example4 :: Double
example4 = fromDyn dynamicBox 0.0
-- 6.62
```

In GHC 7.8 the Typeable class is poly-kinded so polymorphic functions can be applied over functions and higher kinded types.

Use of Dynamic is somewhat rare, except in odd cases that have to deal with foreign memory and FFI interfaces. Using it for business logic is considered a code smell. Consider a more idiomatic solution.
Data

Just as Typeable lets create runtime type information where needed, the Data class allows us to reflect information about the structure of datatypes to runtime as needed.

```haskell
class Typeable a => Data a where
 gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a

 gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a

 toConstr :: a -> Constr
 dataTypeOf :: a -> DataType
 gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
```

The types for `gfoldl` and `gunfold` are a little intimidating (and depend on `Rank2Types`), the best way to understand is to look at some examples. First the most trivial case a simple sum type `Animal` would produce the following code:

```haskell
data Animal = Cat | Dog deriving Typeable

instance Data Animal where
 gfoldl k z Cat = z Cat
 gfoldl k z Dog = z Dog

 gunfold k z c
 = case constrIndex c of
 1 -> z Cat
 2 -> z Dog

 toConstr Cat = cCat
 toConstr Dog = cDog

 dataTypeOf _ = tAnimal

 tAnimal :: DataType
 tAnimal = mkDataType "Main.Animal" [cCat, cDog]

 cCat :: Constr
 cCat = mkConstr tAnimal "Cat" [] Prefix
```
cDog :: Constr  
cDog = mkConstr tAnimal "Dog" [] Prefix

For a type with non-empty containers we get something a little more interesting. Consider the list type:

```
instance Data a => Data [a] where
 gfoldl _ z [] = z []
 gfoldl k z (x:xs) = z (:) `k` x `k` xs

 toConstr [] = nilConstr
 toConstr (::_) = consConstr

 gunfold k z c
 = case constrIndex c of
 1 -> z []
 2 -> k (k (z (::)))

dataTypeOf _ = listDataType
```

```
nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix

consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix

listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]

Looking at gfoldl we see the Data has an implementation of a function for us to walk an applicative over the elements of the constructor by applying a function k over each element and applying z at the spine. For example look at the instance for a 2-tuple as well:

```
instance (Data a, Data b) => Data (a,b) where
  gfoldl k z (a,b) = z (,) `k` a `k` b

  toConstr (_,_) = tuple2Constr

  gunfold k z c
    = case constrIndex c of
        1 -> k (k (z (::)))

dataTypeOf _  = tuple2DataType
```

tuple2Constr :: Constr
tuple2Constr = mkConstr tuple2DataType "(,)") [] Infix
tuple2DataType :: DataType
tuple2DataType = mkDataType "Prelude.(,)") [tuple2Constr]

This is pretty neat, now within the same typeclass we have a generic way to
introspect any Data instance and write logic that depends on the structure and
types of its subterms. We can now write a function which allow us to traverse
an arbitrary instance Data and twiddle values based on pattern matching on the
runtime types. So let’s write down a function over which increments a Value
type for both for n-tuples and lists.

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Data
import Control.Monad.Identity
import Control.Applicative

data Animal = Cat | Dog deriving (Data, Typeable)

newtype Val = Val Int deriving (Show, Data, Typeable)

incr :: Typeable a => a -> a
incr = maybe id id (cast f)
 where f (Val x) = Val (x * 100)

over :: Data a => a -> a
over x = runIdentity $ gfoldl cont base (incr x)
 where
 cont k d = k <$> (pure $ over d)
 base = pure

eexample1 :: Constr
eexample1 = toConstr Dog
 -- Dog

eexample2 :: DataType
eexample2 = dataTypeOf Cat
 -- DataType {tycon = "Main.Animal", datarep = AlgRep [Cat,Dog]}

eexample3 :: [Val]
eexample3 = over [Val 1, Val 2, Val 3]
 -- [Val 100,Val 200,Val 300]

eexample4 :: (Val, Val, Val)
eexample4 = over (Val 1, Val 2, Val 3)
 -- (Val 100,Val 200,Val 300)
We can also write generic operations to for instance count the number of parameters in a data type.

```haskell
numHoles :: Data a => a -> Int
numHoles = gmapQl (+) 0 (const 1)

example1 :: Int
example1 = numHoles (1,2,3,4,5,6,7)
-- 7

eexample2 :: Int
eexample2 = numHoles (Just 3)
-- 1
```

Syb

Using the interface provided by the Data we can retrieve the information we need to, at runtime, inspect the types of expressions and rewrite them, collect terms, and find subterms matching specific predicates.

```haskell
everywhere :: (forall a. Data a => a -> a) -> forall a. Data a => a -> a
everywhereM :: Monad m => GenericM m -> GenericM m
somewhere :: MonadPlus m => GenericM m -> GenericM m
listify :: Typeable r => (r -> Bool) -> GenericQ [r]
everything :: (r -> r -> r) -> GenericQ r -> GenericQ r
```

For example consider we have some custom collection of datatypes for which we want to write generic transformations that transform numerical subexpressions according to set of rewrite rules. We can use `syb` to write the transformation rules quite succinctly.

```
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Data
import Data.Typeable
import Data.Generics.Schemes
import Data.Generics.Aliases (mkT)

data MyTuple a = MyTuple a Float
  deriving (Data, Typeable, Show)

eexampleT :: Data a => MyTuple a -> MyTuple a
eexampleT = everywhere (mkT go1) . everywhere (mkT go2)
  where
    go1 :: Int -> Int
    go1 x = succ x
go2 :: Float -> Float
go2 x = succ x

findFloat :: Data x => x -> Maybe Float
findFloat = gfindtype

main :: IO ()
main = do
  let term = MyTuple (MyTuple (1 :: Int) 2.0) 3.0
  print (exampleT term)
  print (gsize term)
  print (findFloat term)
  print (listify ((>0) :: (Int -> Bool)) term)
  
  • Data.Generics.Schemes

Generic

The most modern method of doing generic programming uses type families to achieve a better of deriving the structural properties of arbitrary type classes. Generic implements a typeclass with an associated type Rep (Representation) together with a pair of functions that form a 2-sided inverse (isomorphism) for converting to and from the associated type and the derived type in question.

class Generic a where
type Rep a
from :: a -> Rep a
to :: Rep a -> a

class Datatype d where
datatypeName :: t d f a -> String
moduleName :: t d f a -> String

class Constructor c where
conName :: t c f a -> String

GHC.Generics defines a set of named types for modeling the various structural properties of types in available in Haskell.

-- / Sums: encode choice between constructors
infixr 5 :+:;
data :+: f g p = L1 (f p) | R1 (g p)

-- / Products: encode multiple arguments to constructors
infixr 6 :*;
data :*: f g p = f p :*: g p
-- | Tag for M1: datatype
data D

-- | Tag for M1: constructor
data C

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D

-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C

Using the deriving mechanics GHC can generate this Generic instance for us mechanically, if we were to write it by hand for a simple type it might look like this:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.Generics

data Animal
  = Dog
  | Cat

instance Generic Animal where
  type Rep Animal = D1 T_Animal ((C1 C_Dog U1) :+: (C1 C_Cat U1))

    from Dog = M1 (L1 (M1 U1))
    from Cat = M1 (R1 (M1 U1))

    to (M1 (L1 (M1 U1))) = Dog
    to (M1 (R1 (M1 U1))) = Cat

data T_Animal
data C_Dog
data C_Cat

instance Datatype T_Animal where
  datatypeName _ = "Animal"
  moduleName _ = "Main"
instance Constructor C_Dog where
    conName _ = "Dog"

instance Constructor C_Cat where
    conName _ = "Cat"

Use `:kind!` in GHCi we can look at the type family `Rep` associated with a Generic instance.

: :kind! Rep Animal
Rep Animal :: * -> *
= M1 D T_Animal (M1 C C_Dog U1 :+: M1 C C_Cat U1)

: :kind! Rep ()
Rep () :: * -> *
= M1 D GHC.Generics.D1() (M1 C GHC.Generics.C1_0() U1)

: :kind! Rep [()]
Rep [()] :: * -> *
= M1
    D GHC.Generics.D1[]
    (M1 C GHC.Generics.C1_0[] U1 :+: M1 C GHC.Generics.C1_1[]
    (M1 S NoSelector (K1 R ()) :+: M1 S NoSelector (K1 R [()])))

Now the clever bit, instead writing our generic function over the datatype we instead write it over the Rep and then reify the result using `from`. Some for an equivalent version of Haskell’s default `Eq` that instead uses generic deriving we could write:

class GEq' f where
    geq' :: f a -> f a -> Bool

instance GEq' U1 where
    geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
    geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
    geq' (M1 a) (M1 b) = geq' a b

-- Equality for sums.
instance (GEq' a, GEq' b) => GEq' (a :+: b) where
    geq' (L1 a) (L1 b) = geq' a b
geq' (R1 a) (R1 b) = geq' a b
geq' _ _ = False

-- Equality for products.
instance (GEq' a, GEq' b) => GEq' (a ++ b) where
  geq' (a1 ++ b1) (a2 ++ b2) = geq' a1 a2 && geq' b1 b2

Now to accommodate the two methods of writing classes (generic-deriving or custom implementations) we can use DefaultSignatures extension to allow the user to leave typeclass functions blank and defer to the Generic or to define their own.

{-# LANGUAGE DefaultSignatures #-}

class GEq a where
  geq :: a -> a -> Bool

  default geq :: (Generic a, GEq' (Rep a)) -> a -> a -> Bool
  geq x y = geq' (from x) (from y)

Now anyone using our library need only derive Generic and create an empty instance of our typeclass instance without writing any boilerplate for GEq.

And end to end example for deriving equality generics:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq' f where
  geq' :: f a -> f a -> Bool

instance GEq' U1 where
  geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
  geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
  geq' (M1 a) (M1 b) = geq' a b

instance (GEq' a, GEq' b) => GEq' (a ++ b) where
  geq' (L1 a) (L1 b) = geq' a b
  geq' (R1 a) (R1 b) = geq' a b
  geq' _ _ = False

203
instance (GEq' a, GEq' b) => GEq' (a :*: b) where
  geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

--

class GEq a where
  geq :: a -> a -> Bool
  default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
  geq x y = geq' (from x) (from y)

-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)

-- Equalities derived from structure of (:+) and (:*:)
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)

main :: IO ()
main = do
  print $ geq 2 (3 :: Int)
  print $ geq 'a' 'b'
  print $ geq (Just 'a') (Just 'a')
  print $ geq ('a','b') ('a', 'b')

See:
  • Cooking Classes with Datatype Generic Programming
  • Datatype-generic Programming in Haskell
  • generic-deriving

Generic Deriving

Using Generics many common libraries provide a mechanisms to derive common
typeclass instances. Some real world examples:
The hashable library allows us to derive hashing functions.
{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic)
import Data.Hashable

data Color = Red | Green | Blue deriving (Generic, Show)

instance Hashable Color where
example1 :: Int
example1 = hash Red
   -- 839657738087498284

example2 :: Int
example2 = hashWithSalt 0xDEADBEEF Red
   -- 62679985974121021

The cereal library allows us to automatically derive a binary representation.
{-# LANGUAGE DeriveGeneric #-}

import Data.Word
import Data.ByteString
import Data.Serialize
import GHC.Generics

data Val = A [Val] | B [(Val, Val)] | C
   deriving (Generic, Show)

instance Serialize Val where

encoded :: ByteString
encoded = encode (A [B [(C, C)]])
   -- "\NUL\NUL\NUL\NUL\NUL\NUL\SOH\SOH\NUL\NUL\NUL\NUL\NUL\NUL\SOH\STX\STX"

bytes :: [Word8]
bytes = unpack encoded
   -- [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,2,2]

decoded :: Either String Val
decoded = decode encoded

The aeson library allows us to derive JSON representations for JSON instances.
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson
import GHC.Generics

data Point = Point { _x :: Double, _y :: Double }
   deriving (Show, Generic)

instance FromJSON Point
instance ToJSON Point

205
example1 :: Maybe Point
example1 = decode "{"x":3.0,"y":-1.0}"

example2 = encode $ Point 123.4 20

See: A Generic Deriving Mechanism for Haskell

Higher Kinded Generics

Using the same interface GHC.Generics provides a separate typeclass for higher-kinded generics.

class Generic1 f where
  type Rep1 f :: * -> *
  from1 :: f a -> (Rep1 f) a
  to1 :: (Rep1 f) a -> f a

So for instance Maybe has Rep1 of the form:

type instance Rep1 Maybe
  = D1
    GHC.Generics.D1Maybe
    (C1 C1_0Maybe U1
     :+: C1 C1_1Maybe (S1 NoSelector Par1))

Uniplate

Uniplate is a generics library for writing traversals and transformation for arbitrary data structures. It is extremely useful for writing AST transformations and rewriting systems.

plate :: from -> Type from to
(\(*) :: Type (to -> from) to -> to -> Type from to
(\(-) :: Type (item -> from) to -> item -> Type from to

descend :: Uniplate on => (on -> on) -> on -> on
transform :: Uniplate on => (on -> on) -> on -> on
rewrite :: Uniplate on => (on -> Maybe on) -> on -> on

The descend function will apply a function to each immediate descendant of an expression and then combines them up into the parent expression.

The transform function will perform a single pass bottom-up transformation of all terms in the expression.

The rewrite function will perform an exhaustive transformation of all terms in the expression to fixed point, using Maybe to signify termination.
import Data.Generics.Uniplate.Direct

data Expr a
  = Fls
  | Tru
  | Var a
  | Not (Expr a)
  | And (Expr a) (Expr a)
  | Or (Expr a) (Expr a)
deriving (Show, Eq)

instance Uniplate (Expr a) where
  uniplate (Not f) = plate Not |* f
  uniplate (And f1 f2) = plate And |* f1 |* f2
  uniplate (Or f1 f2) = plate Or |* f1 |* f2
  uniplate x = plate x

simplify :: Expr a -> Expr a
simplify = transform simp
where
  simp (Not (Not f)) = f
  simp (Not Fls) = Tru
  simp (Not Tru) = Fls
  simp x = x

reduce :: Show a => Expr a -> Expr a
reduce = rewrite cnf
where
  -- double negation
  cnf (Not (Not p)) = Just p

  -- de Morgan
  cnf (Not (p `Or` q)) = Just $ (Not p) `And` (Not q)
  cnf (Not (p `And` q)) = Just $ (Not p) `Or` (Not q)

  -- distribute conjunctions
  cnf ((p `And` q) `Or` r) = Just $ (p `Or` q) `And` (p `Or` r)
  cnf (p `Or` (q `And` r)) = Just $ (p `Or` q) `And` (p `Or` r)
  cnf _ = Nothing

example1 :: Expr String
example1 = simplify (Not (Not (Not (Not (Var "a")))))
  -- Var "a"

example2 :: [String]

207
example2 = [a | Var a <- universe ex]
where
  ex = Or (And (Var "a") (Var "b")) (Not (And (Var "c") (Var "d")))
  = ["a", "b", "c", "d"]

example3 :: Expr String
example3 = reduce $ ((a `And` b) `Or` (c `And` d)) `Or` e
where
  a = Var "a"
  b = Var "b"
  c = Var "c"
  d = Var "d"
  e = Var "e"

Alternatively Uniplate instances can be derived automatically from instances of
Data without the need to explicitly write a Uniplate instance. This approach
carries a slight amount of overhead over an explicit hand-written instance.

import Data.Data
import Data.Typeable
import Data.Generics.Uniplate.Data

data Expr a
  = Fls
  | Tru
  | Lit a
  | Not (Expr a)
  | And (Expr a) (Expr a)
  | Or (Expr a) (Expr a)
  deriving (Data, Typeable, Show, Eq)

Biplate

Biplates generalize plates where the target type isn’t necessarily the same as
the source, it uses multiparameter typeclasses to indicate the type sub of the
sub-target. The Uniplate functions all have an equivalent generalized biplate
form.

descendBi :: Biplate from to => (to -> to) -> from -> from
transformBi :: Biplate from to => (to -> to) -> from -> from
rewriteBi :: Biplate from to => (to -> Maybe to) -> from -> from

descendBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
transformBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
rewriteBiM :: (Monad m, Biplate from to) => (to -> m (Maybe to)) -> from -> m from

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}
import Data.Generics.Uniplate.Direct

type Name = String

data Expr
  = Var Name
  | Lam Name Expr
  | App Expr Expr
  deriving Show

data Stmt
  = Decl [Stmt]
  | Let Name Expr
  deriving Show

instance Uniplate Expr where
  uniplate (Var x) = plate Var \- x
  uniplate (App x y) = plate App \* x \* y
  uniplate (Lam x y) = plate Lam \- x \* y

instance Biplate Expr Expr where
  biplate = plateSelf

instance Uniplate Stmt where
  uniplate (Decl x) = plate Decl \|\* x
  uniplate (Let x y) = plate Let \- x \* y

instance Biplate Stmt Stmt where
  biplate = plateSelf

instance Biplate Stmt Expr where
  biplate (Decl x) = plate Decl \|\+ x
  biplate (Let x y) = plate Let \- x \* y

rename :: Name -> Name -> Expr -> Expr
rename from to = rewrite f
  where
    f (Var a) | a == from = Just (Var to)
    f (Lam a b) | a == from = Just (Lam to b)
    f _ = Nothing

s, k, sk :: Expr
s = Lam "x" (Lam "y" (Lam "z" (App (App (Var "x") (Var "z")) (App (Var "y") (Var "z")))) (App (Var "y") (Var "z"))))
k = Lam "x" (Lam "y" (Var "x"))
sk = App s k
m :: Stmt
m = descendBi f $ Decl [ (Let "s" s), Let "k" k, Let "sk" sk ]
    where
        f = rename "x" "a"
        . rename "y" "b"
        . rename "z" "c"

Mathematics

Numeric Tower

Haskell’s numeric tower is unusual and the source of some confusion for novices. Haskell is one of the few languages to incorporate statically typed overloaded literals without a mechanism for “coercions” often found in other languages.

To add to the confusion numerical literals in Haskell are desugared into a function from a numeric typeclass which yields a polymorphic value that can be instantiated to any instance of the \texttt{Num} or \texttt{Fractional} typeclass at the call-site, depending on the inferred type.

To use a blunt metaphor, we’re effectively placing an object in a hole and the size and shape of the hole defines the object you place there. This is very different than in other languages where a numeric literal like \texttt{2.718} is hard coded in the compiler to be a specific type (double or something) and you cast the value at runtime to be something smaller or larger as needed.

\texttt{42 :: Num a => a}
\texttt{fromInteger (42 :: Integer)}

\texttt{2.71 :: Fractional a => a}
\texttt{fromRational (2.71 :: Rational)}

The numeric typeclass hierarchy is defined as such:

\begin{verbatim}
class Num a
class (Num a, Ord a) => Real a
class Num a => Fractional a
class (Real a, Enum a) => Integral a
class (Real a, Fractional a) => RealFrac a
class Fractional a => Floating a
class (RealFrac a, Floating a) => RealFloat a
\end{verbatim}

Conversions between concrete numeric types (from : left column, to : top row) is accomplished with several generic functions.

\begin{center}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Double & Float & Int & Word & Integer & Rational \\
\hline
Double & id & fromRational & truncate & truncate & truncate & toRational \\
\hline
\end{tabular}
\end{center}
The **Integer** type in GHC is implemented by the GMP (**libgmp**) arbitrary precision arithmetic library. Unlike the **Int** type the size of Integer values is bounded only by the available memory. Most notably **libgmp** is one of the few libraries that compiled Haskell binaries are dynamically linked against.

An alternative library **integer-simple** can be linked in place of **libgmp**.

See: GHC, primops and exorcising GMP

**Complex**

Haskell supports arithmetic with complex numbers via a Complex datatype from the **Data.Complex** module. The first argument is the real part, while the second is the imaginary part. The type has a single parameter and inherits it's numerical typeclass components (Num, Fractional, Floating) from the type of this parameter.

```haskell
-- 1 + 2i
let complex = 1 :+ 2

data Complex a = a :+ a
mkPolar :: RealFloat a => a -> a -> Complex a
```

The Num instance for **Complex** is only defined if parameter of **Complex** is an instance of **RealFloat**.

```haskell
: 0 :+ 1
0 :+ 1 :: Complex Integer

: (0 :+ 1) + (1 :+ 0)
1.0 :+ 1.0 :: Complex Integer

: exp (0 :+ 2 * pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

: mkPolar 1 (2*pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double
```
Figure 3:
let \( f x n = (\cos x + \sin x)^n \)

let \( g x n = \cos (nx) + \sin (nx) \)

### Scientific

Scientific provides arbitrary-precision numbers represented using scientific notation. The constructor takes an arbitrarily sized Integer argument for the digits and an Int for the exponent. Alternatively the value can be parsed from a String or coerced from either Double/Float.

*scientific :: Integer -> Int -> Scientific*

*fromFloatDigits :: RealFloat a => a -> Scientific*

```haskell
import Data.Scientific

c, h, g, a, k :: Scientific

\[
\begin{align*}
 c &= \text{scientific } 299792458 \ (0) \quad \text{-- Speed of light} \\
 h &= \text{scientific } 662606957 \ (-42) \quad \text{-- Planck's constant} \\
 g &= \text{scientific } 667384 \ (-16) \quad \text{-- Gravitational constant} \\
 a &= \text{scientific } 729735257 \ (-11) \quad \text{-- Fine structure constant} \\
 k &= \text{scientific } 268545200 \ (-9) \quad \text{-- Khinchin Constant}
\end{align*}
\]

\[
\begin{align*}
 \tau &= \text{scientific } 2 \pi \\
 \text{maxDouble64} &= \text{read } "1.7976931348623159e308" \quad \text{-- Infinity}
\end{align*}
\]

```

### Statistics

```haskell
import Data.Vector
import Statistics.Sample

import Statistics.Distribution.Normal
import Statistics.Distribution.Poisson
import qualified Statistics.Distribution as S

s1 :: Vector Double
s1 = fromList [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
s2 :: PoissonDistribution
s2 = poisson 2.5

s3 :: NormalDistribution
s3 = normalDistr mean stdDev
    where
    mean   = 1
    stdDev = 1

descriptive = do
    print $ range s1
    -- 9.0
    print $ mean s1
    -- 5.5
    print $ stdDev s1
    -- 3.0276503540974917
    print $ variance s1
    -- 8.25
    print $ harmonicMean s1
    -- 3.414171521474055
    print $ geometricMean s1
    -- 4.528728816167645

discrete = do
    print $ S.cumulative s2 0
    -- 8.208499862389884e-2
    print $ S.mean s2
    -- 2.5
    print $ S.variance s2
    -- 2.5
    print $ S.stdDev s2
    -- 1.581138300841898

continuous = do
    print $ S.cumulative s3 0
    -- 0.15865525393145707
    print $ S.quantile s3 0.5
    -- 1.0
    print $ S.density s3 0
    -- 0.24197072451914334
    print $ S.mean s3
    -- 1.0
    print $ S.variance s3
    -- 1.0
    print $ S.stdDev s3
    -- 1.0
**Constructive Reals**

Instead of modeling the real numbers on finite precision floating point numbers we alternatively work with Num which internally manipulate the power series expansions for the expressions when performing operations like arithmetic or transcendental functions without losing precision when performing intermediate computations. Then we simply slice off a fixed number of terms and approximate the resulting number to a desired precision. This approach is not without its limitations and caveats ( notably that it may diverge ).

\[
\begin{align*}
\exp(x) &= 1 + x + \frac{1}{2!}x^2 + \frac{1}{6!}x^3 + \frac{1}{24!}x^4 + \frac{1}{120!}x^5 \ldots \\
\sqrt{1+x} &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 \ldots \\
\arctan(x) &= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \frac{1}{9}x^9 - \frac{1}{11}x^{11} \ldots \\
\pi &= 16 \times \arctan \left( \frac{1}{5} \right) - 4 \times \arctan \left( \frac{1}{239} \right)
\end{align*}
\]

```haskell
import Data.Number.CReal

-- algebraic
phi :: CReal
phi = (1 + sqrt 5) / 2

-- transcendental
ramanujan :: CReal
ramanujan = exp (pi * sqrt 163)
```

**SAT Solvers**

A collection of constraint problems known as satisfiability problems show up in a number of different disciplines from type checking to package management. Simply put a satisfiability problem attempts to find solutions to a statement of conjoined conjunctions and disjunctions in terms of a series of variables. For example:

\[(A \lor \neg B \lor C) \land (B \lor D \lor E) \land (D \lor F)\]

To use the picosat library to solve this, it can be written as zero-terminated lists of integers and fed to the solver according to a number-to-variable relation:
The SAT solver itself can be used to solve satisfiability problems with millions of variables in this form and is finely tuned.

See:

- picosat

**SMT Solvers**

A generalization of the SAT problem to include predicates other theories gives rise to the very sophisticated domain of “Satisfiability Modulo Theory” problems. The existing SMT solvers are very sophisticated projects (usually bankrolled by large institutions) and usually have to called out to via foreign function interface or via a common interface called SMT-lib. The two most common of use in Haskell are cvc4 from Stanford and z3 from Microsoft Research.

The SBV library can abstract over different SMT solvers to allow us to express the problem in an embedded domain language in Haskell and then offload the solving work to the third party library.

As an example, here’s how you can solve a simple cryptarithm

\[
\begin{array}{c}
\text{MONAD} \\
+ \text{Burrito} \\
= \text{BANDAID}
\end{array}
\]

using SBV library:

```haskell
import Data.Foldable
import Data.SBV

-- | val [4,2] == 42
val :: [SInteger] -> SInteger
val = foldr1 (\d r -> d + 10*r) . reverse

puzzle :: Symbolic SBool
puzzle = do
```


ds@[b,u,r,i,t,o,m,n,a,d] <- sequenceA [ sInteger [v] | v <- "buritomnad" ]
constrain $ allDifferent ds
for_ ds $ \d -> constrain $ inRange d (0,9)
pure $  val [b,u,r,i,t,o]
    + val [m,o,n,a,d]
    == val [b,a,n,d,a,i,d]

Let's look at all possible solutions,

: allSat puzzle
Solution #1:
  b = 4 :: Integer
  u = 1 :: Integer
  r = 5 :: Integer
  i = 9 :: Integer
  t = 7 :: Integer
  o = 0 :: Integer
  m = 8 :: Integer
  n = 3 :: Integer
  a = 2 :: Integer
  d = 6 :: Integer
This is the only solution.

See:
  * sbv
  * cvc4
  * z3

Data Structures

Map

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>size</td>
<td>O(1)</td>
</tr>
<tr>
<td>Lookup</td>
<td>lookup</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Insertion</td>
<td>insert</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

A map is an associative array mapping any instance of Ord keys to values of any type.
import qualified Data.Map as Map

kv :: Map.Map Integer String
kv = Map.fromList [(1, "a"), (2, "b")]

lkup :: Integer -> String -> String
lkup key def =
    case Map.lookup key kv of
        Just val -> val
        Nothing  -> def

Tree

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>size</td>
<td>O(1)</td>
</tr>
<tr>
<td>Lookup</td>
<td>lookup</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Insertion</td>
<td>insert</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

import Data.Tree

{-

     A
    / \
   B   C
  / \ /
 D   E

-}

tree :: Tree String
tree = Node "A" [Node "B" [], Node "C" [Node "D" [], Node "E" []]]

postorder :: Tree a -> [a]
postorder (Node a ts) = elts ++ [a]
    where elts = concat (map postorder ts)

preorder :: Tree a -> [a]
preorder (Node a ts) = a : elts
    where elts = concat (map preorder ts)
Sets are an unordered data structures allowing `Ord` values of any type and guaranteeing uniqueness within the structure. They are not identical to the mathematical notion of a Set even though they share the same namesake.

```haskell
import qualified Data.Set as Set

set :: Set.Set Integer
set = Set.fromList [1..1000]

memtest :: Integer -> Bool
memtest elt = Set.member elt set
```

Vectors are high performance single dimensional arrays that come in six variants, two for each of the following types of a mutable and an immutable variant.

```haskell
Vector
```

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>size</td>
<td>O(1)</td>
</tr>
<tr>
<td>Insertion</td>
<td>insert</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Deletion</td>
<td>delete</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
<tr>
<td>Membership Test</td>
<td>member</td>
<td>O(log(n))</td>
</tr>
</tbody>
</table>

219
- Data.Vector
- Data.Vector.Storable
- Data.Vector.Unboxed

The most notable feature of vectors is constant time memory access with \((!))\) as well as variety of efficient map, fold and scan operations on top of a fusion framework that generates surprisingly optimal code.

\[
\text{fromList} :: [a] \rightarrow \text{Vector} \ a \\
\text{toList} :: \text{Vector} \ a \rightarrow [a] \\
(!!) :: \text{Vector} \ a \rightarrow \text{Int} \rightarrow \text{a} \\
\text{map} :: (a \rightarrow b) \rightarrow \text{Vector} \ a \rightarrow \text{Vector} \ b \\
\text{foldl} :: (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow \text{Vector} \ b \rightarrow a \\
\text{scanl} :: (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow \text{Vector} \ b \rightarrow \text{Vector} \ a \\
\text{zipWith} :: (a \rightarrow b \rightarrow c) \rightarrow \text{Vector} \ a \rightarrow \text{Vector} \ b \rightarrow \text{Vector} \ c \\
\text{iterateN} :: \text{Int} \rightarrow (a \rightarrow a) \rightarrow a \rightarrow \text{Vector} \ a \\
\]

\[
\text{import Data.Vector.Unboxed}\ \text{as V} \\
\]

\[
\text{norm} :: \text{Vector Double} \rightarrow \text{Double} \\
\text{norm} = \text{sqrt} \ . \ V.\text{sum} \ . \ V.\text{map} \ (\lambda x \rightarrow x^2) \\
\]

\[
\text{example1} :: \text{Double} \\
\text{example1} = \text{norm} \ \$ \ V.\text{iterateN} 100000000 \ (+1) 0.0 \\
\]

See: Numerical Haskell: A Vector Tutorial

### Mutable Vectors

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>length</td>
<td>O(1)</td>
</tr>
<tr>
<td>Indexing</td>
<td>(!)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Append</td>
<td>append</td>
<td>O(n)</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
<tr>
<td>Update</td>
<td>modify</td>
<td>O(1)</td>
</tr>
<tr>
<td>Read</td>
<td>read</td>
<td>O(1)</td>
</tr>
<tr>
<td>Write</td>
<td>write</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

\[
\text{freeze} :: \text{MVector} \ (\text{PrimState} \ m) \ a \rightarrow m \ (\text{Vector} \ a) \\
\text{thaw} :: \text{Vector} \ a \rightarrow \text{MVector} \ (\text{PrimState} \ m) \ a \\
\]

Within the IO monad we can perform arbitrary read and writes on the mutable vector with constant time reads and writes. When needed a static Vector can be created to/from the \text{MVector} using the freeze/thaw functions.
import GHC.Prim
import Control.Monad
import Control.Monad.ST
import Control.Monad.Primitive

import Data.Vector.Unboxed (freeze)
import Data.Vector.Unboxed.Mutable
import qualified Data.Vector.Unboxed as V

example :: PrimMonad m => m (V.Vector Int)
example = do
  v <- new 10
  forM_ [0..9] \i ->
    write v i (2*i)
  freeze v

-- vector computation in IO
vecIO :: IO (V.Vector Int)
vecIO = example

-- vector computation in ST
vecST :: ST s (V.Vector Int)
vecST = example

main :: IO ()
main = do
  vecIO >>= print
  print $ runST vecST

The vector library itself normally does bounds checks on index operations to
protect against memory corruption. This can be enabled or disabled on the
library level by compiling with boundschecks cabal flag.

Unordered-Containers

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>size</td>
<td>O(1)</td>
</tr>
<tr>
<td>Lookup</td>
<td>lookup</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Insertion</td>
<td>insert</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
</tbody>
</table>
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v

Both the HashMap and HashSet are purely functional data structures that are drop in replacements for the containers equivalents but with more efficient space and time performance. Additionally all stored elements must have a Hashable instance.

```
import qualified Data.HashSet as S
import qualified Data.HashMap.Lazy as M

example1 :: M.HashMap
example1 = M.fromList $ zip [1..10] ['a'..]

example2 :: S.HashSet
example2 = S.fromList [1..10]
```

See: Announcing Unordered Containers

### Hashtables

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>empty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Size</td>
<td>size</td>
<td>O(1)</td>
</tr>
<tr>
<td>Lookup</td>
<td>lookup</td>
<td>O(1)</td>
</tr>
<tr>
<td>Insertion</td>
<td>insert</td>
<td>O(1) amortized</td>
</tr>
<tr>
<td>Traversal</td>
<td>traverse</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Hashtables provides hashtables with efficient lookup within the ST or IO monad.

```
import Prelude hiding (lookup)

import Control.Monad.ST
import Data.HashTable.ST.Basic

-- Hasitable parameterized by ST "thread"
type HT s = Hashable s String String

set :: ST s (HT s)
set = do
 ht <- new
 insert ht "key" "value1"
 return ht

get :: HT s -> ST s (Maybe String)
```
get ht = do
    val <- lookup ht "key"
    return val

example :: Maybe String
example = runST (set >>= get)

new :: ST s (HashTable s k v)
insert :: (Eq k, Hashable k) => HashTable s k v -> k -> v -> ST s ()
lookup :: (Eq k, Hashable k) => HashTable s k v -> k -> ST s (Maybe v)

Graphs

The Graph module in the containers library is a somewhat antiquated API for working with directed graphs. A little bit of data wrapping makes it a little more straightforward to use. The library is not necessarily well-suited for large graph-theoretic operations but is perfectly fine for example, to use in a typechecker which need to resolve strongly connected components of the module definition graph.

import Data.Tree
import Data.Graph

data Grph node key = Grph
  { _graph :: Graph,
    _vertices :: Vertex -> (node, key, [key])
  }

fromList :: Ord key => [(node, key, [key])] -> Grph node key
fromList = uncurry Grph . graphFromEdges'

vertexLabels :: Functor f => Grph b t -> (f Vertex) -> f b
vertexLabels g = fmap (vertexLabel g)

vertexLabel :: Grph b t -> Vertex -> b
vertexLabel g = (\(vi, _, _) -> vi) . (_vertices g)

-- Topologically sort graph
topo' :: Grph node key -> [node]
topo' g = vertexLabels g $ topSort (_graph g)

-- Strongly connected components of graph
scc' :: Grph node key -> [[node]]
scc' g = fmap (vertexLabels g . flatten) $ scc (_graph g)

So for example we can construct a simple graph:
Figure 4:
ex1 :: [(String, String, [String])]  
ex1 = [  
  ("a","a",["b"]),  
  ("b","b",["c"]),  
  ("c","c",["a"])
  ]

ts1 :: [String]  
ts1 = topo' (fromList ex1)  
-- ["a","b","c"]

sc1 :: [[String]]  
sc1 = scc' (fromList ex1)  
-- [["a","b","c"]]

Or with two strongly connected subgraphs:

ex2 :: [(String, String, [String])]  
ex2 = [  
  ("a","a",["b"]),  
  ("b","b",["c"]),  
  ("c","c",["a"])
  ]

Figure 5:
ts2 :: [String]
ts2 = topo' (fromList ex2)
  -- ["d","e","f","a","b","c"]

sc2 :: [[String]]
sc2 = scc' (fromList ex2)
  -- [["d","e","f"],["a","b","c"]]

See: GraphSCC

Graph Theory

The fgl library provides a more efficient graph structure and a wide variety of common graph-theoretic operations. For example calculating the dominance frontier of a graph shows up quite frequently in control flow analysis for compiler design.

import qualified Data.Graph.Inductive as G

cyc3 :: G.Gr Char String
cyc3 = G.buildGr
  [[["ca",3]],1,'a',[["ab",2]]],
  ([],2,'b',[["bc",3]]),
  ([],3,'c',[]))

-- Loop query
ex1 :: Bool
ex1 = G.hasLoop x

-- Dominators
ex2 :: [(G.Node, [G.Node])]
ex2 = G.dom x 0
x :: G.Gr Int()
x = G.insEdges edges gr
  where
  gr = G.insNodes nodes G.empty
  edges = [(0,1,()), (0,2,()), (2,1,()), (2,3,())]
  nodes = zip [0..] [2,3,4,1]
DList

A dlist is a list-like structure that is optimized for O(1) append operations, internally it uses a Church encoding of the list structure. It is specifically suited for operations which are append-only and need only access it when manifesting the entire structure. It is particularly well-suited for use in the Writer monad.

```haskell
import Data.DList
import Control.Monad
import Control.Monad.Writer

logger :: Writer (DList Int) ()
logger = replicateM_ 100000 $ tell (singleton 0)
```

Sequence

The sequence data structure behaves structurally similar to list but is optimized for append/prepend operations and traversal.

```haskell
import Data.Sequence

a :: Seq Int
a = fromList [1,2,3]

a@ :: Seq Int
a@ = a |> 4
-- [1,2,3,4]

a1 :: Seq Int
a1 = 0 <| a
-- [0,1,2,3]
```

FFI

This is an advanced section, knowledge of FFI is not typically necessary to write Haskell.

Pure Functions

Wrapping pure C functions with primitive types is trivial.

```c
int example(int a, int b)
{
```
return a + b;
}

-- ghc simple.o simple_ffi.hs -o simple_ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.C.Types

foreign import ccall safe "example" example :: CInt -> CInt -> CInt

main = print (example 42 27)

Storable Arrays

There exists a Storable typeclass that can be used to provide low-level access to the memory underlying Haskell values. Ptr objects in Haskell behave much like C pointers although arithmetic with them is in terms of bytes only, not the size of the type associated with the pointer (this differs from C).

The Prelude defines Storable interfaces for most of the basic types as well as types in the Foreign.C library.

class Storable a where
  sizeOf :: a -> Int
  alignment :: a -> Int
  peek :: Ptr a -> IO a
  poke :: Ptr a -> a -> IO ()

To pass arrays from Haskell to C we can again use Storable Vector and several unsafe operations to grab a foreign pointer to the underlying data that can be handed off to C. Once we’re in C land, nothing will protect us from doing evil things to memory!

/* $(CC) -c qsort.c -o qsort.o */
void swap(int *a, int *b)
{
  int t = *a;
  *a = *b;
  *b = t;
}

void sort(int *xs, int beg, int end)
{
  if (end > beg + 1) {
    int piv = xs[beg], l = beg + 1, r = end;

    while (l < r) {

229
if (xs[l] <= piv) {
    l++;
} else {
    swap(&xs[l], &xs[--r]);
}

swap(&xs[--l], &xs[beg]);
sort(xs, beg, l);
sort(xs, r, end);
}

-- ghc qsort.o ffi.hs -o ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.Ptr
import Foreign.C.Types
import qualified Data.Vector.Storable as V
import qualified Data.Vector.Storable.Mutable as VM

foreign import ccall safe "sort" qsort :: Ptr a -> CInt -> CInt -> IO ()

main :: IO ()
main = do
    let vs = V.fromList ([1,3,5,2,1,2,5,9,6] :: [CInt])
    v <- V.thaw vs
    VM.unsafeWith v $ \ptr -> do
        qsort ptr 0 9
    out <- V.freeze v
    print out

The names of foreign functions from a C specific header file can be qualified.

foreign import ccall unsafe "stdlib.h malloc" malloc :: CSize -> IO (Ptr a)

Prepending the function name with a & allows us to create a reference to the function pointer itself.

foreign import ccall unsafe "stdlib.h &malloc" malloc :: FunPtr a
Function Pointers

Using the above FFI functionality, it’s trivial to pass C function pointers into Haskell, but what about the inverse passing a function pointer to a Haskell function into C using `foreign import ccall "wrapper"`.

```c
#include <stdio.h>

void invoke(void *fn(int))
{
 int n = 42;
 printf("Inside of C, now we'll call Haskell.\n");
 fn(n);
 printf("Back inside of C again.\n");
}

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import System.IO
import Foreign.C.Types(CInt(..))

foreign import ccall "wrapper"
 makeFunPtr :: (CInt -> IO ()) -> IO (FunPtr (CInt -> IO ()))

foreign import ccall "pointer.c invoke"
 invoke :: FunPtr (CInt -> IO ()) -> IO ()

fn :: CInt -> IO ()
fn n = do
 putStrLn "Hello from Haskell, here's a number passed between runtimes:"
 print n
 hFlush stdout

main :: IO ()
main = do
 fptr <- makeFunPtr fn
 invoke fptr

Will yield the following output:

Inside of C, now we'll call Haskell
Hello from Haskell, here's a number passed between runtimes:
42
Back inside of C again.
```
Concurrence

The definitive reference on concurrency and parallelism in Haskell is Simon Marlow’s text. This will section will just gloss over these topics because they are far better explained in this book.

See: Parallel and Concurrent Programming in Haskell

\texttt{forkIO :: IO () \rightarrow IO ThreadId}

Haskell threads are extremely cheap to spawn, using only 1.5KB of RAM depending on the platform and are much cheaper than a pthread in C. Calling \texttt{forkIO 106 times completes just short of a 1s. Additionally, functional purity in Haskell also guarantees that a thread can almost always be terminated even in the middle of a computation without concern.}

See: The Scheduler

Sparks

The most basic “atom” of parallelism in Haskell is a spark. It is a hint to the GHC runtime that a computation can be evaluated to weak head normal form in parallel.

\texttt{rpar :: a \rightarrow Eval a}
\texttt{rseq :: Strategy a}
\texttt{rdeepseq :: NFData a \Rightarrow Strategy a}
\texttt{runEval :: Eval a \rightarrow a}

\texttt{rpar} a spins off a separate spark that evolutes a to weak head normal form and places the computation in the spark pool. When the runtime determines that there is an available CPU to evaluate the computation it will evaluate (convert) the spark. If the main thread of the program is the evaluator for the spark, the spark is said to have \textit{fizzled}. Fizzling is generally bad and indicates that the logic or parallelism strategy is not well suited to the work that is being evaluated.

The spark pool is also limited (but user-adjustable) to a default of 8000 (as of GHC 7.8.3). Sparks that are created beyond that limit are said to overflow.

\texttt{-\textit{Evaluates the arguments to f in parallel before application.}}
\texttt{par2 f x y = x \ `rpar` y \ `rpar` f x y}

An argument to \texttt{rseq} forces the evaluation of a spark before evaluation continues.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fizzled</td>
<td>The resulting value has already been evaluated by the main thread so the spark need not be converted.</td>
</tr>
<tr>
<td>Dud</td>
<td>The expression has already been evaluated, the computed value is returned and the spark is not converted.</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GC'd</td>
<td>The spark is added to the spark pool but the result is not referenced, so it is garbage collected.</td>
</tr>
<tr>
<td>Overflowed</td>
<td>Insufficient space in the spark pool when spawning.</td>
</tr>
</tbody>
</table>

The parallel runtime is necessary to use sparks, and the resulting program must be compiled with `-threaded`. Additionally the program itself can be specified to take runtime options with `-rtsopts` such as the number of cores to use.

```
ghc -threaded -rtsopts program.hs
./program +RTS -s N8 -- use 8 cores
```

The runtime can be asked to dump information about the spark evaluation by passing the `-s` flag.

```
$./spark +RTS -N4 -s
```

<table>
<thead>
<tr>
<th></th>
<th>Tot time (elapsed)</th>
<th>Avg pause</th>
<th>Max pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 0</td>
<td>5 colls, 5 par</td>
<td>0.02s</td>
<td>0.01s</td>
</tr>
<tr>
<td>Gen 1</td>
<td>3 colls, 2 par</td>
<td>0.00s</td>
<td>0.00s</td>
</tr>
</tbody>
</table>

**Parallel GC work balance:** 1.83% (serial 0%, perfect 100%)

**TASKS:** 6 (1 bound, 5 peak workers (5 total), using `-N4`)

**SPARKS:** 20000 (20000 converted, 0 overflowed, 0 dud, 0 GC’d, 0 fizzled)

The parallel computations themselves are sequenced in the Eval monad, whose evaluation with `runEval` is itself a pure computation.

```
example :: (a -> b) -> a -> a -> (b, b)
example f x y = runEval $ do
 a <- rpar $ f x
 b <- rpar $ f y
 rseq a
 rseq b
 return (a, b)
```

**Threads scope**

Passing the flag `-l` generates the eventlog which can be rendered with the threadscope library.

```
$ ghc -O2 -threaded -rtsopts -eventlog Example.hs
$./program +RTS -N4 -l
$ threadscope Example.eventlog
```

See Simon Marlow's *Parallel and Concurrent Programming in Haskell* for a detailed guide on interpreting and profiling using Threadscope.
Figure 7:
See:

- Performance profiling with ghc-events-analyze

**Strategies**

```haskell
type Strategy a = a -> Eval a
using :: a -> Strategy a -> a
```

Sparks themselves form the foundation for higher level parallelism constructs known as *strategies* which adapt spark creation to fit the computation or data structure being evaluated. For instance if we wanted to evaluate both elements of a tuple in parallel we can create a strategy which uses sparks to evaluate both sides of the tuple.

```haskell
import Control.Parallel.Strategies

parPair' :: Strategy (a, b)
parPair' (a, b) = do
 a' <- rpar a
 b' <- rpar b
 return (a', b')

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: (Int, Int)
serial = (fib 30, fib 31)

parallel :: (Int, Int)
parallel = runEval . parPair' $ (fib 30, fib 31)
```

This pattern occurs so frequently the combinator `using` can be used to write it equivalently in operator-like form that may be more visually appealing to some.

```haskell
using :: a -> Strategy a -> a
x `using` s = runEval (s x)

parallel :: (Int, Int)
parallel = (fib 30, fib 31) `using` parPair
```

For a less contrived example consider a parallel `parmap` which maps a pure function over a list of a values in parallel.

```haskell
import Control.Parallel.Strategies

parMap' :: (a -> b) -> [a] -> Eval [b]
```
parMap' f [] = return []
parMap' f (a:as) = do
  b <- rpar (f a)
  bs <- parMap' f as
  return (b:bs)

result :: [Int]
result = runEval $ parMap' (+) [1..1000]

The functions above are quite useful, but will break down if evaluation of the
arguments needs to be parallelized beyond simply weak head normal form. For
instance if the arguments to rpar is a nested constructor we’d like to parallelize
the entire section of work in evaluated the expression to normal form instead
of just the outer layer. As such we’d like to generalize our strategies so the
the evaluation strategy for the arguments can be passed as an argument to the
strategy.

Control.Parallel.Strategies contains a generalized version of rpar which
embeds additional evaluation logic inside the rpar computation in Eval monad.

rparWith :: Strategy a -> Strategy a
Using the deepseq library we can now construct a Strategy variant of rseq that
evaluates to full normal form.

rdeepseq :: NFData a => Strategy a
rdeepseq x = rseq (force x)

We now can create a “higher order” strategy that takes two strategies and itself
yields a a computation which when evaluated uses the passed strategies in its
scheduling.

import Control.DeepSeq
import Control.Parallel.Strategies

evalPair :: Strategy a -> Strategy b -> Strategy (a, b)
evalPair sa sb (a, b) = do
  a' <- sa a
  b' <- sb b
  return (a', b')

parPair :: Strategy a -> Strategy b -> Strategy (a, b)
parPair sa sb = evalPair (rparWith sa) (rparWith sb)

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: ([Int], [Int])
serial = (a, b)
    where
        a = fmap fib [0..30]
        b = fmap fib [1..30]

parallel :: ([Int], [Int])
parallel = (a, b) `using` evalPair rdeepseq rdeepseq
    where
        a = fmap fib [0..30]
        b = fmap fib [1..30]

These patterns are implemented in the Strategies library along with several other
general forms and combinators for combining strategies to fit many different
parallel computations.

parTraverse :: Traversable t => Strategy a -> Strategy (t a)
dot :: Strategy a -> Strategy a -> Strategy a
($) || (a -> b) -> Strategy a -> a -> b
(.[||) :: (b -> c) -> Strategy b -> (a -> b) -> a -> c

See:
  • Control.Concurrent.Strategies

STM

atomically :: STM a -> IO a
orElse :: STM a -> STM a -> STM a
retry :: STM a

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)
writeTVar :: TVar a -> a -> STM ()
readTVar :: TVar a -> STM a

modifyTVar :: TVar a -> (a -> a) -> STM ()
modifyTVar' :: TVar a -> (a -> a) -> STM ()

Software Transactional Memory is a technique for guaranteeing atomicity of
values in parallel computations, such that all contexts view the same data when
read and writes are guaranteed never to result in inconsistent states.

The strength of Haskell’s purity guarantees that transactions within STM are
pure and can always be rolled back if a commit fails.

import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM
type Account = TVar Double

transfer :: Account -> Account -> Double -> STM ()
transfer from to amount = do
  available <- readTVar from
  when (amount > available) retry

  modifyTVar from (+ (-amount))
  modifyTVar to (+ amount)

-- Threads are scheduled non-deterministically.
actions :: Account -> Account -> [IO ThreadId]
actions a b = map forkIO [
  -- transfer to
  atomically (transfer a b 10)
  , atomically (transfer a b (-20))
  , atomically (transfer a b 30)

  -- transfer back
  , atomically (transfer a b (-30))
  , atomically (transfer a b 20)
  , atomically (transfer a b (-10))
]

main :: IO ()
main = do
  accountA <- atomically $ newTVar 60
  accountB <- atomically $ newTVar 0

  sequence_ (actions accountA accountB)

  balanceA <- atomically $ readTVar accountA
  balanceB <- atomically $ readTVar accountB

  print $ balanceA == 60
  print $ balanceB == 0

See: Beautiful Concurrency

Monad Par

Using the Par monad we express our computation as a data flow graph which is scheduled in order of the connections between forked computations which exchange resulting computations with IVar.
new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
fork :: Par () -> Par ()
spawn :: NFData a => Par a -> Par (IVar a)

\[
\text{Figure 8:}
\]

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\(a + b\)};
\node (fa) at (-2,-2) {\(f(a + b)\)};
\node (ga) at (2,-2) {\(g(a + b)\)};
\node (fx) at (-2,-4) {\(f(x)\)};
\node (g) at (2,-4) {\(g(x)\)};
\node (d) at (-2,-6) {\(d\)};
\node (e) at (2,-6) {\(e\)};
\draw [->] (a) -- (fa);
\draw [->] (a) -- (ga);
\draw [->] (a) -- (fx);
\draw [->] (a) -- (g);
\draw [->] (fa) -- (d);
\draw [->] (ga) -- (e);
\end{tikzpicture}
\end{center}

\begin{verbatim}
import Control.Monad
import Control.Monad.Par

f, g :: Int -> Int
f x = x + 10
g x = x * 10

-- f x    g x
\end{verbatim}
example1 :: Int -> (Int, Int)
example1 x = runPar $ do
  [a,b,c,d,e] <- replicateM 5 new
  fork (put a (f x))
  fork (put b (g x))
  a' <- get a
  b' <- get b
  fork (put c (a' + b'))
  c' <- get c
  fork (put d (f c'))
  fork (put e (g c'))
  d' <- get d
  e' <- get e
  return (d', e')

example2 :: [Int]
example2 = runPar $ do
  xs <- parMap (+1) [1..25]
  return xs

-- foldr (+) 0 (map (^2) [1..xs])
example3 :: Int -> Int
example3 n = runPar $ do
  let range = (InclusiveRange 1 n)
  let mapper x = return (x ^ 2)
  let reducer x y = return (x + y)
  parMapReduceRangeThresh 10 range mapper reducer 0

async

Async is a higher level set of functions that work on top of Control.Concurrent and STM.

async :: IO a -> IO (Async a)
wait :: Async a -> IO a
cancel :: Async a -> IO ()
concurrently :: IO a -> IO b -> IO (a, b)
race :: IO a -> IO b -> IO (Either a b)
import Control.Monad
import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async
import Data.Time
timeit :: IO a -> IO (a, Double)
timeit io = do
t0 <- getCurrentTime
a <- io
t1 <- getCurrentTime
return (a, realToFrac (t1 `diffUTCTime` t0))

worker :: Int -> IO Int
worker n = do
  -- simulate some work
  threadDelay (10^2 * n)
  return (n * n)

-- Spawn 2 threads in parallel, halt on both finished.
test1 :: IO (Int, Int)
test1 = do
  val1 <- async $ worker 1000
  val2 <- async $ worker 2000
  (,) <$> wait val1 <*> wait val2

-- Spawn 2 threads in parallel, halt on first finished.
test2 :: IO (Either Int Int)
test2 = do
  let val1 = worker 1000
  let val2 = worker 2000
  race val1 val2

-- Spawn 10000 threads in parallel, halt on all finished.
test3 :: IO [Int]
test3 = mapConcurrently worker [0..10000]

main :: IO ()
main = do
  print =<< timeit test1
  print =<< timeit test2
  print =<< timeit test3
Graphics

Diagrams

Diagrams is a parser combinator library for generating vector images to SVG and a variety of other formats.

```haskell
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine

sierpinski :: Int -> Diagram SVG R2
sierpinski 1 = eqTriangle 1
sierpinski n =
 s
 ===
 (s ||| s) # centerX
where
 s = sierpinski (n - 1)

example :: Diagram SVG R2
example = sierpinski 5 # fc black

main :: IO ()
main = defaultMain example

$ runhaskell diagram1.hs -w 256 -h 256 -o diagram1.svg
```

Figure 9:

See: Diagrams Quick Start Tutorial
Parsing

Parsec

For parsing in Haskell it is quite common to use a family of libraries known as
*Parser Combinators* which let us write code to generate parsers which themselves
looks very similar to the parser grammar itself!

<table>
<thead>
<tr>
<th>Combinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>`&lt;</td>
</tr>
<tr>
<td><code>many</code></td>
</tr>
<tr>
<td><code>many1</code></td>
</tr>
<tr>
<td><code>optional</code></td>
</tr>
<tr>
<td><code>try</code></td>
</tr>
</tbody>
</table>

There are two styles of writing Parsec, one can choose to write with monads or
with applicatives.

```haskell
parseM :: Parser Expr
parseM = do
 a <- identifier
 char '+'
 b <- identifier
 return $ Add a b
```

The same code written with applicatives uses the applicative combinators:

```haskell
-- | Sequential application.
(<>*) :: f (a -> b) -> f a -> f b

-- | Sequence actions, discarding the value of the first argument.
(>*>) :: f a -> f b -> f b
(>*>) = liftA2 (const id)

-- | Sequence actions, discarding the value of the second argument.
(<>*) :: f a -> f b -> f a
(<>*) = liftA2 const
```

```haskell
parseA :: Parser Expr
parseA = Add <$> identifier <*> char '+' <*> identifier
```

Now for instance if we want to parse simple lambda expressions we can encode
the parser logic as compositions of these combinators which yield the string
parser when evaluated under with the `parse`.

```haskell
import Text.Parsec
import Text.Parsec.String
```
data Expr
  = Var Char
  | Lam Char Expr
  | App Expr Expr
deriving Show

lam :: Parser Expr
lam = do
  char '\\'
  n <- letter
  string "->"
  e <- expr
  return $ Lam n e

app :: Parser Expr
app = do
  apps <- many1 term
  return $ foldl1 App apps

var :: Parser Expr
var = do
  n <- letter
  return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
  char '('
  e <- p
  char ')'
  return e

term :: Parser Expr
term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
  e <- expr
eof
  return e

test :: IO ()
test = parseTest decl "\y->y(\x->x)y"
Custom Lexer

In our previous example lexing pass was not necessary because each lexeme mapped to a sequential collection of characters in the stream type. If we wanted to extend this parser with a non-trivial set of tokens, then Parsec provides us with a set of functions for defining lexers and integrating these with the parser combinators. The simplest example builds on top of the builtin Parsec language definitions which define a set of most common lexical schemes.

For instance we’ll build on top of the empty language grammar on top of the haskellDef grammer that uses the Text token instead of string.

{-# LANGUAGE OverloadedStrings #-}

import Text.Parsec
import Text.Parsec.Text
import qualified Text.Parsec.Token as Tok
import qualified Text.Parsec.Language as Lang

import Data.Functor.Identity (Identity)
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

data Expr
  = Var T.Text
  | App Expr Expr
  | Lam T.Text Expr
deriving (Show)

lexer :: Tok.GenTokenParser T.Text () Identity
lexer = Tok.makeTokenParser style

style :: Tok.GenLanguageDef T.Text () Identity
style = Lang.emptyDef
  { Tok.commentStart       = "-{",
    Tok.commentEnd         = "-}",
    Tok.commentLine        = "---",
    Tok.nestedComments     = True,
    Tok.identStart         = letter,
    Tok.identLetter        = alphaNum <|> oneOf "_!
    , Tok.opStart           = Tok.opLetter style
    , Tok.opLetter          = oneOf ":!#$&%&*./<=>?@\^\-\|\~"

main :: IO ()
main = test >>= print
, Tok.reservedOpNames = []
, Tok.reservedNames = []
, Tok.caseSensitive = True
}

d scope : Parser a -> Parser a
d scope = Tok.d scope lexer

d reservedOp : T.Text -> Parser ()
d reservedOp op = Tok.d reservedOp lexer (T.unpack op)

d ident : Parser T.Text
d ident = T.pack <$> Tok.d identifier lexer

d contents : Parser a -> Parser a
d contents p = do
  Tok.d whiteSpace lexer
  r <- p
d .eof
d  return r
d

d var : Parser d Expr
d var = do
  var <- ident
d  return (Var var )

d app : Parser d Expr
d app = do
  e1 <- expr
  e2 <- expr
  return (App e1 e2)

d fun : Parser d Expr
d fun = do
  reservedOp "\"
  binder <- ident
  reservedOp "."
  rhs <- expr
  return (Lam binder rhs)

d expr : Parser d Expr
d expr = do
  es <- many1 aexp
  return (foldl1 App es)

daexp : Parser d Expr
aexp = fun <|> var <|> (parens expr)

test :: T.Text -> Either ParseError Expr
test = parse (contents expr) "<stdin>"

repl :: IO ()
repl = do
  str <- TI0.getLine
  print (test str)
  repl

main :: IO ()
main = repl

See: Text.Parsec.Language

Simple Parsing

Putting our lexer and parser together we can write down a more robust parser
for our little lambda calculus syntax.

module Parser (parseExpr) where

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (haskellStyle)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

type Id = String

data Expr
  = Lam Id Expr
  | App Expr Expr
  | Var Id
  | Num Int
  | Op Binop Expr Expr
  deriving (Show)

data Binop = Add | Sub | Mul deriving Show

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
  where ops = ["->", "\", "+", "-", "/", "]""

style = haskellStyle {Tok.reservedOpNames = ops }
reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

identifier :: Parser String
identifier = Tok.identifier lexer

parens :: Parser a -> Parser a
parens = Tok.parens lexer

contents :: Parser a -> Parser a
contents p = do
  Tok.whiteSpace lexer
  r <- p
  eof
  return r

natural :: Parser Integer
natural = Tok.natural lexer

variable :: Parser Expr
variable = do
  x <- identifier
  return (Var x)

number :: Parser Expr
number = do
  n <- natural
  return (Num (fromIntegral n))

lambda :: Parser Expr
lambda = do
  reservedOp "\"
  x <- identifier
  reservedOp "->"
  e <- expr
  return (Lam x e)

aexp :: Parser Expr
aexp = parens expr
  <|> variable
  <|> number
  <|> lambda

term :: Parser Expr
term = Ex.buildExpressionParser table aexp
where infixOp x f = Ex.Infix (reservedOp x >> return f)
    table = [[infixOp "*" (Op Mul) Ex.AssocLeft],
             [infixOp "+" (Op Add) Ex.AssocLeft]]

expr :: Parser Expr
expr = do
    es <- many1 term
    return (foldl1 App es)

parseExpr :: String -> Expr
parseExpr input =
    case parse (contents expr) "<stdin>" input of
        Left err -> error (show err)
        Right ast -> ast

main :: IO ()
main = getLine >>= print . parseExpr >> main

Trying it out:
: runhaskell simpleparser.hs
1+2
Op Add (Num 1) (Num 2)

\i -> \x -> x
Lam "i" (Lam "x" (Var "x"))

\s -> \f -> \g -> \x -> f x (g x)
Lam "s" (Lam "f" (Lam "g" (Lam "x" (App (App (Var "f" (Var "x")) (Var "x")) (App (Var "g" (Var "x"))))))))

Generic Parsing

Previously we defined generic operations for pretty printing and this begs the question of whether we can write a parser on top of Generics. The answer is generally yes, so long as there is a direct mapping between the specific lexemes and sum and products types. Consider the simplest case where we just read off the names of the constructors using the regular Generics machinery and then build a Parsec parser terms of them.

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Text.Parsec
import Text.Parsec.Text.Lazy
import Control.Applicative ((<*>), (<*>, (<$>)))
import GHC.Generics

class GParse f where
  gParse :: Parser (f a)

  -- Type synonym metadata for constructors
instance (GParse f, Constructor c) => GParse (C1 c f) where
  gParse =
    let con = conName (undefined :: t c f a) in
    (fmap M1 gParse) <*> string con

  -- Constructor names
instance GParse f => GParse (D1 c f) where
  gParse = fmap M1 gParse

  -- Sum types
instance (GParse a, GParse b) => GParse (a :+: b) where
  gParse = try (fmap L1 gParse <|> fmap R1 gParse)

  -- Product types
instance (GParse f, GParse g) => GParse (f :+: g) where
  gParse = (:+:) <$> gParse <*> gParse

  -- Nullary constructors
instance GParse U1 where
  gParse = return U1

data Scientist
  = Newton
  | Einstein
  | Schrodinger
  | Feynman
  deriving (Show, Generic)

data Musician
  = Vivaldi
  | Bach
  | Mozart
  | Beethoven
  deriving (Show, Generic)

gparse :: (Generic g, GParse (Rep g)) => Parser g
gparse = fmap to gParse
scientist :: Parser Scientist
scientist = gparse

musician :: Parser Musician
musician = gparse

: parseTest parseMusician "Bach"
Bach

: parseTest parseScientist "Feynman"
Feynman

**Attoparsec**

Attoparsec is a parser combinator like Parsec but more suited for bulk parsing of large text and binary files instead of parsing language syntax to ASTs. When written properly Attoparsec parsers can be efficient.

One notable distinction between Parsec and Attoparsec is that backtracking operator (try) is not present and reflects on attoparsec’s different underlying parser model.

For a simple little lambda calculus language we can use attoparsec much in the same we used parsec:

```
{-# LANGUAGE OverloadedStrings #-}
{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}

import Control.Applicative
import Data.Attoparsec.Text
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Data.List (foldl1')

data Name
 = Gen Int
 | Name T.Text
 deriving (Eq, Show, Ord)

data Expr
 = Var Name
 | App Expr Expr
 | Lam [Name] Expr
 | Lit Int
 | Prim PrimOp
 deriving (Eq, Show)
```
data PrimOp
    = Add
    | Sub
    | Mul
    | Div
deriving (Eq, Show)

data Defn = Defn Name Expr
deriving (Eq, Show)

name :: Parser Name
name = Name . T.pack <$> many1 letter

num :: Parser Expr
num = Lit <$> signed decimal

var :: Parser Expr
var = Var <$> name

lam :: Parser Expr
lam = do
    string "\""
    vars <- many1 (skipSpace *> name)
    skipSpace *> string "->"
    body <- expr
    return (Lam vars body)

eparen :: Parser Expr
eparen = char '(' *> expr <*> skipSpace <*> char ')' 

prim :: Parser Expr
prim = Prim <$> (char '+' *> return Add
    <| char '-' *> return Sub
    <| char '*' *> return Mul
    <| char '/' *> return Div)

expr :: Parser Expr
expr = foldl1 App <$> many1 (skipSpace *> atom)

atom :: Parser Expr
atom = try lam
    <|> eparen
    <|> prim
    <|> var
    <|> num
def :: Parser Defn
def = do
    skipSpace
    nm <- name
    skipSpace *> char '=' *> skipSpace
    ex <- expr
    skipSpace *> char ';'
    return $ Defn nm ex

file :: T.Text -> Either String [Defn]
file = parseOnly (many def <* skipSpace)

parseFile :: FilePath -> IO (Either T.Text [Defn])
parseFile path = do
    contents <- T.readFile path
    case file contents of
        Left a -> return $ Left (T.pack a)
        Right b -> return $ Right b

main :: IO (Either T.Text [Defn])
main = parseFile "simple.ml"

For an example try the above parser with the following simple lambda expression.

f = g (x - 1);
g = f (x + 1);
h = \x y -> (f x) + (g y);

Attoparsec adapts very well to binary and network protocol style parsing as well, this is extracted from a small implementation of a distributed consensus network protocol:

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad
import Data.Attoparsec
import Data.Attoparsec.Char8 as A
import Data.ByteString.Char8

data Action
    = Success 
    | KeepAlive 
    | NoResource 
    | Hangup 
    | NewLeader
Election
deriving Show

type Sender = ByteString
type Payload = ByteString

data Message = Message
  { action :: Action,
    sender :: Sender,
    payload :: Payload
  } deriving Show

proto :: Parser Message
proto = do
  act <- paction
  send <- A.takeTill (== '.')
  body <- A.takeTill (A.isSpace)
  endOfLine
  return $ Message act send body

paction :: Parser Action
paction = do
  c <- anyWord8
  case c of
    1 -> return Success
    2 -> return KeepAlive
    3 -> return NoResource
    4 -> return Hangup
    5 -> return NewLeader
    6 -> return Election
    _ -> mzero

main :: IO ()
main = do
  let msgtext = "\x01\x6c\x61\x70\x74\x6f\x70\x33\x31\x34\x31\x35\x39\x32\x36\x35\x33\x35\0A"
  let msg = parseOnly proto msgtext
  print msg

See: Text Parsing Tutorial

Optparse Applicative

Optparse-applicative is a combinator library for building command line interfaces that take in various user flags, commands and switches and map them into Haskell data structures that can handle the input. The main interface
is through the applicative functor Parser and various combinators such as strArgument and flag which populate the option parsing table which some monadic action which returns a Haskell value. The resulting sequence of values can be combined applicatively into a larger Config data structure that holds all the given options. The --help header is also automatically generated from the combinators.

```
./optparse
Usage: optparse.hs [filename...] [--quiet] [--cheetah]

Available options:
 -h,--help Show this help text
 filename... Input files
 --quiet Whether to shut up.
 --cheetah Perform task quickly.
```

```haskell
import Data.List
import Data.Monoid
import Options.Applicative

data Opts = Opts
 { _files :: [String],
 _quiet :: Bool,
 _fast :: Speed }

data Speed = Slow | Fast

options :: Parser Opts
options = Opts <$> filename <*> quiet <*> fast
 where
 filename :: Parser [String]
 filename = many $ argument str $
 metavar "filename..."
 <> help "Input files"

 fast :: Parser Speed
 fast = flag Slow Fast $
 long "cheetah"
 <> help "Perform task quickly."

 quiet :: Parser Bool
 quiet = switch $
 long "quiet"
 <> help "Whether to shut up."

 greet :: Opts -> IO ()
```
greet (Opts files quiet fast) = do
  putStrLn "reading these files:
  mapM_ print files

case fast of
  Fast -> putStrLn "quickly"
  Slow -> putStrLn "slowly"

case quiet of
  True -> putStrLn "quietly"
  False -> putStrLn "loudly"

opts :: ParserInfo Opts
opts = info (helper <*> options) fullDesc

main :: IO ()
main = execParser opts >>= greet

See: Optparse Applicative Tutorial

Happy & Alex

Happy is a parser generator system for Haskell, similar to the tool ‘yacc’ for C. It works as a preprocessor with its own syntax that generates a parse table from two specifications, a lexer file and parser file. Happy does not have the same underlying parser implementation as parser combinators and can effectively work with left-recursive grammars without explicit factorization. It can also easily be modified to track position information for tokens and handle off-side parsing rules for indentation-sensitive grammars. Happy is used in GHC itself for Haskell’s grammar.

1. Lexer.x
2. Parser.y

Running the standalone commands will generate the Haskell source for the modules.

$ alex Lexer.x -o Lexer.hs
$ happy Parser.y -o Parser.hs

The generated modules are not human readable generally and unfortunately error messages are given in the Haskell source, not the Happy source.

 Lexer

For instance we could define a little toy lexer with a custom set of tokens.
module Lexer (  
Token(..),  
scanTokens  
) where  

import Syntax  

%wrapper "basic"  

$digit = 0-9  
$alpha = [a-zA-Z]  
$eol = [
]  

tokens :-  

-- Whitespace insensitive  
$eol ;  
$white+ ;  
print { \s -> TokenPrint }  
$digit+ { \s -> TokenNum (read s) }  
\= { \s -> TokenEq }  
$alpha [$alpha $digit \_ \']* { \s -> TokenSym s }  

{  

data Token  
= TokenNum Int  
| TokenSym String  
| TokenPrint  
| TokenEq  
| TokenEOF  
deriving (Eq,Show)  

scanTokens = alexScanTokens  

}  

Parser  

The associated parser is list of a production rules and a monad to running the parser in. Production rules consist of a set of options on the left and generating Haskell expressions on the right with indexed metavariables ($1$, $2$, ...) mapping to the ordered terms on the left (i.e. in the second term term ~ $1$, term ~ $2$).
module Parser (parseExpr,)
where

import Lexer
import Syntax
import Control.Monad.Except

%name expr
%tokentype { Token }
%monad { Except String } { (>>=) } { return }
%error { parseError }

%token
int { TokenNum $$ }
var { TokenSym $$ }
print { TokenPrint }
'=' { TokenEq }

terms :
    term { [$1] }
  | term terms { $1 : $2 }

parseError :: [Token] -> Except String a
parseError (1:ls) = throwError (show 1)
parseError [] = throwError "Unexpected end of Input"

parseExpr :: String -> Either String [Expr]
parseExpr input =
    let tokenStream = scanTokens input in
    runExcept (expr tokenStream)
}

As a simple input consider the following simple program.

    x = 4
    print x
    y = 5
    print y
    y = 6
    print y

Configurator

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import qualified Data.Configurator as C

data Config = Config
    { verbose :: Bool,
      loggingLevel :: Int,
      logfile :: FilePath,
      dbHost :: Text,
      dbUser :: Text,
      dbDatabase :: Text,
      dbpassword :: Maybe Text
    }
    deriving (Eq, Show)

readConfig :: FilePath -> IO Config
readConfig cfgFile = do
    cfg <- C.load [C.Required cfgFile]
    verbose <- C.require cfg "logging.verbose"
    loggingLevel <- C.require cfg "logging.loggingLevel"
    logFile <- C.require cfg "logging.logfile"
    hostname <- C.require cfg "database.hostname"
    username <- C.require cfg "database.username"
    database <- C.require cfg "database.database"
    password <- C.lookup cfg "database.password"
    return $ Config verbose loggingLevel logFile hostname username database password

main :: IO ()
main = do
    cfg <- readConfig "example.config"
print cfg
logging
{
  verbose = true
  logfile = "/tmp/app.log"
  loggingLevel = 3
}
database
{
  hostname = "us-east-1.rds.amazonaws.com"
  username = "app"
  database = "booktown"
  password = "hunter2"
}

Streaming

Lazy IO

The problem with using the usual monadic approach to processing data accumulated through IO is that the Prelude tools require us to manifest large amounts of data in memory all at once before we can even begin computation.

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
sequence :: Monad m => [m a] -> m [a]

Reading from the file creates a thunk for the string that forced will then read the file. The problem is then that this method ties the ordering of IO effects to evaluation order which is difficult to reason about in the large.

Consider that normally the monad laws (in the absence of seq) guarantee that these computations should be identical. But using lazy IO we can construct a degenerate case.

import System.IO

main :: IO ()
main = do
  withFile "foo.txt" ReadMode $ \fd -> do
    contents <- hGetContents fd
    print contents
    -- "foo\n"

  contents <- withFile "foo.txt" ReadMode hGetContents
So what we need is a system to guarantee deterministic resource handling with constant memory usage. To that end both the Conduits and Pipes libraries solved this problem using different (though largely equivalent) approaches.

Pipes

\[
\text{await} :: \text{Monad } m \Rightarrow \text{Pipe } a \ y \ m \ a \\
\text{yield} :: \text{Monad } m \Rightarrow a \rightarrow \text{Pipe } x \ a \ m \ () \\
\text{(>>>)} :: \text{Monad } m \\
\quad \Rightarrow \text{Pipe } a \ b \ m \ r \rightarrow \text{Pipe } b \ c \ m \ r \rightarrow \text{Pipe } a \ c \ m \ r
\]

\[
\text{runEffect} :: \text{Monad } m \Rightarrow \text{Effect } m \ r \rightarrow m \ r \\
\text{toListM} :: \text{Monad } m \Rightarrow \text{Producer } a \ m \ () \rightarrow m \ [a]
\]

Pipes is a stream processing library with a strong emphasis on the static semantics of composition. The simplest usage is to connect “pipe” functions with a (>>>) composition operator, where each component can \text{await} and \text{yield} to push and pull values along the stream.

```haskell
import Pipes
import Pipes.Prelude as P
import Control.Monad
import Control.Monad.Identity

a :: Producer Int Identity ()
a = forM_ [1..10] yield

b :: Pipe Int Int Identity ()
b = forever $ do
 x <- await
 yield (x*2)
 yield (x*3)
 yield (x*4)

c :: Pipe Int Int Identity ()
c = forever $ do
 x <- await
 if (x `mod` 2) == 0
 then yield x
 else return ()
```

261
result :: [Int]
result = P.toList $ a >> b >> c

For example we could construct a “FizzBuzz” pipe.

{-# LANGUAGE MultiWayIf #-}

import Pipes
import qualified Pipes.Prelude as P

count :: Producer Integer IO ()
count = each [1..100]

fizzbuzz :: Pipe Integer String IO ()
fizzbuzz = do
  n <- await
  if | n `mod` 15 == 0 -> yield "FizzBuzz"
     | n `mod` 5  == 0 -> yield "Fizz"
     | n `mod` 3  == 0 -> yield "Buzz"
     | otherwise      -> return ()

fizzbuzz

main :: IO ()
main = runEffect $ count >>- fizzbuzz >>- P.stdoutLn

To continue with the degenerate case we constructed with Lazy IO, consider than we can now compose and sequence deterministic actions over files without having to worry about effect order.

import Pipes
import Pipes.Prelude as P
import System.IO

readF :: FilePath -> Producer String IO ()
readF file = do
  lift $ putStrLn $ "Opened" ++ file
  h <- lift $ openFile file ReadMode
  fromHandle h
  lift $ putStrLn $ "Closed" ++ file
  lift $ hClose h

main :: IO ()
main = runEffect $ readF "foo.txt" >>- P.take 3 >>- stdoutLn

This is simple a sampling of the functionality of pipes. The documentation for pipes is extensive and great deal of care has been taken make the library extremely thorough. pipes is a shining example of an accessible yet category theoretic driven design.
See: Pipes Tutorial

Safe Pipes

\[
\text{bracket} :: \text{MonadSafe} m \Rightarrow \text{Base} m a \to (a \to \text{Base} m b) \to (a \to m c) \to m c
\]

As a motivating example, ZeroMQ is a network messaging library that abstracts over traditional Unix sockets to a variety of network topologies. Most notably it isn’t designed to guarantee any sort of transactional guarantees for delivery or recovery in case of errors so it’s necessary to design a layer on top of it to provide the desired behavior at the application layer.

In Haskell we’d like to guarantee that if we’re polling on a socket we get messages delivered in a timely fashion or consider the resource in an error state and recover from it. Using pipes-safe we can manage the life cycle of lazy IO resources and can safely handle failures, resource termination and finalization gracefully.

In other languages this kind of logic would be smeared across several places, or put in some global context and prone to introduce errors and subtle race conditions. Using pipes we instead get a nice tight abstraction designed exactly to fit this kind of use case.

For instance now we can bracket the ZeroMQ socket creation and finalization within the \text{SafeT} monad transformer which guarantees that after successful message delivery we execute the pipes function as expected, or on failure we halt the execution and finalize the socket.

```haskell
import Pipes
import Pipes.Safe
import qualified Pipes.Prelude as P
import System.Timeout (timeout)
import Data.ByteString.Char8
import qualified System.ZMQ as ZMQ

data Opts = Opts
 { _addr :: String -- ^ ZMQ socket address
 , _timeout :: Int -- ^ Time in milliseconds for socket timeout
 }

recvTimeout :: Opts -> ZMQ.Socket a -> Producer ByteString (SafeT IO) ()
recvTimeout opts sock = do
 body <- liftIO $ timeout (_timeout opts) (ZMQ.receive sock [])
 case body of
 Just msg -> do
 liftIO $ ZMQ.send sock msg []
 yield msg
 recvTimeout opts sock
```

import qualified Pipes.Prelude as P

263
Nothing -> liftIO $ print "socket timed out"

collect :: ZMQ.Context
    -> Opts
    -> Producer ByteString (SafeT IO) ()
collect ctx opts = bracket zinit zclose (recvTimeout opts)
where
    -- Initialize the socket
    zinit = do
        liftIO $ print "waiting for messages"
        sock <- ZMQ.socket ctx ZMQ.Rep
        ZMQ.bind sock (_addr opts)
        return sock

    -- On timeout or completion guarantee the socket get closed.
    zclose sock = do
        liftIO $ print "finalizing"
        ZMQ.close sock

runZmq :: ZMQ.Context -> Opts -> IO ()
runZmq ctx opts = runSafeT $ runEffect $ collect ctx opts >>= P.take 10 >>= P.print

main :: IO ()
main = do
    ctx <- ZMQ.init 1
    let opts = Opts { _addr = "tcp://127.0.0.1:8000", _timeout = 1000000 }
    runZmq ctx opts
    ZMQ.term ctx

Conduits

await :: Monad m -> ConduitM i o m (Maybe i)
yield :: Monad m -> o -> ConduitM i o m ()
($$) :: Monad m -> Source m a -> Sink a m b -> m b
(=*$) :: Monad m -> Conduit a m b -> Sink b m c -> Sink a m c

type Sink i = ConduitM i Void
type Source m o = ConduitM () o m ()
type Conduit i m o = ConduitM i o m ()

Conduits are conceptually similar though philosophically different approach to the same problem of constant space deterministic resource handling for IO resources.
The first initial difference is that await function now returns a `Maybe` which allows different handling of termination. The composition operators are also split into a connecting operator ($$\quad\quad$$) and a fusing operator ($$\quad\quad$$) for combining Sources and Sink and a Conduit and a Sink respectively.

```haskell
{-# LANGUAGE MultiWayIf #-}

import Data.Conduit
import Control.Monad.Trans
import qualified Data.Conduit.List as CL

source :: Source IO Int
source = CL.sourceList [1..100]

conduit :: Conduit Int IO String
conduit = do
 val <- await
 liftIO $ print val
 case val of
 Nothing -> return ()
 Just n -> do
 if | n `mod` 15 == 0 -> yield "FizzBuzz"
 | n `mod` 5 == 0 -> yield "Fizz"
 | n `mod` 3 == 0 -> yield "Buzz"
 | otherwise -> return ()
 conduit

sink :: Sink String IO ()
sink = CL.mapM_ putStrLn

main :: IO ()
main = source $$\quad\quad$$ conduit =$$\quad\quad$$ sink

See: Conduit Overview

Data Formats

JSON

Aeson is library for efficient parsing and generating JSON. It is the canonical JSON library for handling JSON.

```haskell
decode :: FromJSON a => ByteString -> Maybe a
encode :: ToJSON a => a -> ByteString
eitherDecode :: FromJSON a => ByteString -> Either String a
```
A point of some subtlety to beginners is that the return types for Aeson functions are **polymorphic in their return types** meaning that the resulting type of decode is specified only in the context of your programs use of the decode function. So if you use decode in a point your program and bind it to a value x and then use x as if it were an integer throughout the rest of your program, Aeson will select the typeclass instance which parses the given input string into a Haskell integer.

Value

Aeson uses several high performance data structures (Vector, Text, HashMap) by default instead of the naive versions so typically using Aeson will require that we import them and use **OverloadedStrings** when indexing into objects.

The underlying Aeson structure is called **Value** and encodes a recursive tree structure that models the semantics of untyped JSON objects by mapping them onto a large sum type which embodies all possible JSON values.

```haskell
type Object = HashMap Text Value

type Array = Vector Value

-- | A JSON value represented as a Haskell value.
data Value = Object !Object
  | Array !Array
  | String !Text
  | Number !Scientific
  | Bool !Bool
  | Null
```

For instance the Value expansion of the following JSON blob:

```json
{
  "a": [1,2,3],
  "b": 1
}
```

Is represented in Aeson as the **Value**:

```haskell
Object
  (fromList
    [ ("a",
      Array (fromList [ Number 1.0 , Number 2.0 , Number 3.0 ]))
    , ("b",
      Number 1.0 )
    ])```
Let’s consider some larger examples, we’ll work with this contrived example JSON:

```json
{
 "id": 1,
 "name": "A green door",
 "price": 12.50,
 "tags": ["home", "green"],
 "refs": {
 "a": "red",
 "b": "blue"
 }
}
```

**Unstructured JSON**

In dynamic scripting languages it’s common to parse amorphous blobs of JSON without any a priori structure and then handle validation problems by throwing exceptions while traversing it. We can do the same using Aeson and the Maybe monad.

```haskell
{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Data.Aeson
import Data.Vector
import qualified Data.HashMap.Strict as M
import qualified Data.ByteString.Lazy as BL

-- Pull a key out of an JSON object.
(^?) :: Value -> Text -> Maybe Value
(^?) (Object obj) k = M.lookup k obj
(^?) _ _ = Nothing

-- Pull the ith value out of a JSON list.
ix :: Value -> Int -> Maybe Value
ix (Array arr) i = arr !! i
ix _ _ = Nothing

readJSON str = do
 obj <- decode str
 price <- obj ^? "price"
 refs <- obj ^? "refs"
 tags <- obj ^? "tags"
 aref <- refs ^? "a"
 tag1 <- tags `ix` 0
 return (price, aref, tag1)
```
main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  print $ readJSON contents

**Structured JSON**

This isn’t ideal since we’ve just smeared all the validation logic across our traversal logic instead of separating concerns and handling validation in separate logic. We’d like to describe the structure before-hand and the invalid case separately. Using Generic also allows Haskell to automatically write the serializer and deserializer between our datatype and the JSON string based on the names of record field names.

{-# LANGUAGE DeriveGeneric #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

import Control.Applicative

data Refs = Refs
  { a :: Text
  , b :: Text
  } deriving (Show,Generic)

data Data = Data
  { id :: Int
  , name :: Text
  , price :: Int
  , tags :: [Text]
  , refs :: Refs
  } deriving (Show,Generic)

instance FromJSON Data
instance FromJSON Refs
instance ToJSON Data
instance ToJSON Refs

main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  let Just dat = decode contents

print $ name dat
print $ a (refs dat)

Now we get our validated JSON wrapped up into a nicely typed Haskell ADT.

```haskell
data Data = Data
 { id :: Int
 , name :: Text
 , price :: Int
 , tags :: [Text]
 , refs ::Refs
 } deriving (Show,Generic,FromJSON,ToJSON)
```

The functions `fromJSON` and `toJSON` can be used to convert between this sum type and regular Haskell types with.

```haskell
data Result a = Error String | Success a

Success True

Error "when expecting a Double, encountered Boolean instead"
```

As of 7.10.2 we can use the new -XDeriveAnyClass to automatically derive instances of `FromJSON` and `TOJSON` without the need for standalone instance declarations. These are implemented entirely in terms of the default methods which use Generics under the hood.

```haskell
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

data Refs = Refs
 { a :: Text
 , b :: Text
 } deriving (Show,Generic,FromJSON,ToJSON)
```

269
main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  let Just dat = decode contents
  print $ name dat
  print $ a (refs dat)
  BL.putStrLn $ encode dat

Hand Written Instances
While it’s useful to use generics to derive instances, sometimes you actually want more fine grained control over serialization and de serialization. So we fall back on writing ToJSON and FromJSON instances manually. Using FromJSON we can project into hashmap using the (.:) operator to extract keys. If the key fails to exist the parser will abort with a key failure message. The ToJSON instances can never fail and simply require us to pattern match on our custom datatype and generate an appropriate value.

The law that the FromJSON and ToJSON classes should maintain is that encode . decode and decode . encode should map to the same object. Although in practice there may times when we break this rule and especially if the serialize or deserialize is one way.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Text
import Data.Aeson
import Data.Maybe
import Data.Aeson.Types
import Control.Applicative
import qualified Data.ByteString.Lazy as BL

data Crew = Crew
  { name :: Text
  , rank :: Rank
  } deriving (Show)

data Rank
  = Captain
  | Ensign
  | Lieutenant
  deriving (Show)

-- Custom JSON Deserializer

instance FromJSON Crew where
```haskell
parseJSON (Object o) = do
 _name <- o .: "name"
 _rank <- o .: "rank"
 pure (Crew _name _rank)

instance FromJSON Rank where
 parseJSON (String s) = case s of
 "Captain" -> pure Captain
 "Ensign" -> pure Ensign
 "Lieutenant" -> pure Ensign
 _ -> typeMismatch "Could not parse Rank" (String s)
 parseJSON x = typeMismatch "Expected String" x

-- Custom JSON Serializer
instance ToJSON Crew where
 toJSON (Crew name rank) = object [
 "name" .= name
 , "rank" .= rank
]

instance ToJSON Rank where
 toJSON Captain = String "Captain"
 toJSON Ensign = String "Ensign"
 toJSON Lieutenant = String "Lieutenant"

roundTrips :: Crew -> Bool
roundTrips = isJust . go
 where
 go :: Crew -> Maybe Crew
 go = decode . encode

picard :: Crew
picard = Crew { name = "Jean-Luc Picard", rank = Captain }

main :: IO ()
main = do
 contents <- BL.readFile "crew.json"
 let (res :: Maybe Crew) = decode contents
 print res
 print $ roundTrips picard

See: Aeson Documentation
```
Yaml

Yaml is a textual serialization format similar to JSON. It uses an indentation sensitive structure to encode nested maps of keys and values. The Yaml interface for Haskell is a precise copy of Data.Aeson.

invoice: 34843
date: 2001-01-23
bill:
  given: Chris
  family: Dumars
  address:
    lines: |
    | 458 Walkman Dr.
    | Suite #292
  city: Royal Oak
  state: MI
  postal: 48046

Object
(fromList
  [("invoice", Number 34843.0 )
  , ("date", String "2001-01-23")
  , ("bill-to"
    , Object
      (fromList
        [("address"
          , Object
            (fromList
              [("state", String "MI")
              , ("lines", String "458 Walkman Dr.
Suite #292")
              , ("city", String "Royal Oak")
              , ("postal", Number 48046.0)]
          ))
        , ("family", String "Dumars")
        , ("given", String "Chris")
      ])
    )
  ])
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Yaml
import Data.Text (Text)
import qualified Data.ByteString as BL

import GHC.Generics

data Invoice = Invoice
  { invoice :: Int
  , date :: Text
  , bill :: Billing
  } deriving (Show, Generic, FromJSON)

data Billing = Billing
  { address :: Address
  , family :: Text
  , given :: Text
  } deriving (Show, Generic, FromJSON)

data Address = Address
  { lines :: Text
  , city :: Text
  , state :: Text
  , postal :: Int
  } deriving (Show, Generic, FromJSON)

main :: IO ()
main = do
  contents <- BL.readFile "example.yaml"
  let (res :: Either String Invoice) = decodeEither contents
  case res of
    Right val -> print val
    Left err -> putStrLn err

Invoice
  { invoice = 34843
  , date = "2001-01-23"
  , bill = Billing
    { address =
      Address
      { lines = "458 Walkman Dr.\nSuite #292\n"
      , city = "Royal Oak"
      , state = "MI"
      , postal = 48046
      }
    , family = "Dumars"
    , given = "Chris"
CSV

Cassava is an efficient CSV parser library. We’ll work with this tiny snippet from the iris dataset:

```
sepal_length,sepal_width,petal_length,petal_width,plant_class
5.1,3.5,1.4,0.2,Iris-setosa
5.0,2.0,3.5,1.0,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
```

Unstructured CSV

Just like with Aeson if we really want to work with unstructured data the library accommodates this.

```
import Data.Csv
import Text.Show.Pretty

import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

type ErrorMsg = String

type CsvData = V.Vector (V.Vector BL.ByteString)

example :: FilePath -> IO (EitherErrorMsg CsvData)
example fname = do
 contents <- BL.readFile fname
 return $ decode NoHeader contents
```

We see we get the nested set of stringy vectors:

```
[["sepal_length"
 , "sepal_width"
 , "petal_length"
 , "petal_width"
 , "plant_class"
]

 , ["5.1" , "3.5" , "1.4" , "0.2" , "Iris-setosa"]

 , ["5.0" , "2.0" , "3.5" , "1.0" , "Iris-versicolor"]

 , ["6.3" , "3.3" , "6.0" , "2.5" , "Iris-virginica"]

]
Structured CSV

Just like with Aeson we can use Generic to automatically write the deserializer between our CSV data and our custom datatype.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Csv
import GHC.Generics
import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

data Plant = Plant
 { sepal_length :: Double
 , sepal_width :: Double
 , petal_length :: Double
 , petal_width :: Double
 , plant_class :: String
 } deriving (Generic, Show)

instance FromNamedRecord Plant
instance ToNamedRecord Plant

type ErrorMsg = String

type CsvData = (Header, V.Vector Plant)

parseCSV :: FilePath -> IO (Either ErrorMsg CsvData)
parseCSV fname = do
 contents <- BL.readFile fname
 return $ decodeByName contents

main = parseCSV "iris.csv" >>= print

And again we get a nice typed ADT as a result.

[Plant
 { sepal_length = 5.1
 , sepal_width = 3.5
 , petal_length = 1.4
 , petal_width = 0.2
 , plant_class = "Iris-setosa"
 }
 , Plant
 { sepal_length = 5.0
 , sepal_width = 2.0
 , petal_length = 3.5
 , petal_width = 1.0
]
Network & Web Programming

HTTP

Haskell has a variety of HTTP request and processing libraries. The simplest and most flexible is the HTTP library.

{-# LANGUAGE OverloadedStrings #-}

import Network.HTTP.Types
import Network.HTTP.Client
import Control.Applicative
import Control.Concurrent.Async

type URL = String

get :: Manager -> URL -> IO Int
get m url = do
 req <- parseUrl url
 statusCode <$> responseStatus <$> httpNoBody req m

single :: IO Int
single = do
 withManager defaultManagerSettings $ \m -> do
 get m "http://haskell.org"

parallel :: IO [Int]
parallel = do
 withManager defaultManagerSettings $ \m -> do
 -- Fetch w3.org 10 times concurrently
 let urls = replicate 10 "http://www.w3.org"
 mapConcurrently (get m) urls

main :: IO ()
Blaze

Blaze is an HTML combinator library that provides that capacity to build composable bits of HTML programmatically. It doesn’t string templating libraries like Hastache but instead provides an API for building up HTML documents from logic where the format out of the output is generated procedurally.

For sequencing HTML elements the elements can either be sequenced in a monad or with monoid operations.

{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import qualified Data.Text.Lazy.IO as T

example :: Html
example = do
 h1 "First header"
 p $ ul $ mconcat [li "First", li "Second"]

main :: IO ()
main = do
 T.putStrLn $ renderHtml example

For custom datatypes we can implement the ToMarkup class to convert between Haskell data structures and HTML representation.

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as T

data Employee = Employee

277
instance ToMarkup Employee where
 toMarkup Employee ..} = ul $ mconcat
 [li (toHtml name)
 , li (toHtml age)
]

fred :: Employee
fred = Employee { name = "Fred", age = 35 }

Warp

Warp is an efficient web server, it's the backed request engine behind several of popular Haskell web frameworks. The internals have been finely tuned to utilize Haskell’s concurrent runtime and is capable of handling a great deal of concurrent requests.

Scotty

Continuing with our trek through web libraries, Scotty is a web microframework similar in principle to Flask in Python or Sinatra in Ruby.
import qualified Text.Blaze.Html5 as H
import Text.Blaze.Html5 (toHtml, Html)

greet :: String -> Html
greet user = H.html $ do
 H.head $
 H.title "Welcome!"
 H.body $ do
 H.h1 "Greetings!"
 H.p ("Hello " >> toHtml user >> ")"

app = do
 get "/" $
 text "Home Page"

 get "/greet/:name" $ do
 name <- param "name"
 html $ renderHtml (greet name)

main :: IO ()
main = scotty 8000 app

Of importance to note is the Blaze library used here overloads do-notation but is not itself a proper monad so the various laws and invariants that normally apply for monads may break down or fail with error terms.

See: Making a Website with Haskell

Hastache

Hastache is string templating based on the “Mustache” style of encoding metavariables with double braces {{ x }}. Hastache supports automatically converting many Haskell types into strings and uses the efficient Text functions for formatting.

The variables loaded into the template are specified in either a function mapping variable names to printable MuType values. For instance using a function.

{{-# LANGUAGE OverloadedStrings #-}}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Function strContext
context :: String -> MuType IO
context "body" = MuVariable ("Hello World" :: TL.Text)
context "title" = MuVariable ("Haskell is lovely" :: TL.Text)
context _ = MuVariable ()

main :: IO ()
main = do
 output <- template "templates/home.html" (mkStrContext context)
 TL.putStrLn output

Or using Data-Typeable record and mkGenericContext, the Haskell field names are converted into variable names.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Record context
data TemplateCtx = TemplateCtx
 { body :: TL.Text,
 title :: TL.Text
 } deriving (Data, Typeable)

main :: IO ()
main = do
 let ctx = TemplateCtx { body = "Hello", title = "Haskell" }
 output <- template "templates/home.html" (mkGenericContext ctx)
 TL.putStrLn output
The MuType and MuContext types can be parameterized by any monad or transformer that implements MonadIO, not just IO.

Databases

Postgres

Postgres is an object-relational database management system with a rich extension of the SQL standard. Consider the following tables specified in DDL.

```sql
CREATE TABLE "books" (
    "id" integer NOT NULL,
    "title" text NOT NULL,
    "author_id" integer,
    "subject_id" integer,
    Constraint "books_id_pkey" Primary Key ("id")
);

CREATE TABLE "authors" (
    "id" integer NOT NULL,
    "last_name" text,
    "first_name" text,
    Constraint "authors_pkey" Primary Key ("id")
);
```

The postgresql-simple bindings provide a thin wrapper to various libpq commands to interact a Postgres server. These functions all take a Connection object to the database instance and allow various bytestring queries to be sent and result sets mapped into Haskell datatypes. There are four primary functions for these interactions:

- `query_ :: FromRow r => Connection -> Query -> IO [r]`
- `query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]`
- `execute :: ToRow q => Connection -> Query -> q -> IO Int64`
- `execute_ :: Connection -> Query -> IO Int64`

The result of the `query` function is a list of elements which implement the FromRow typeclass. This can be many things including a single element (Only), a list of tuples where each element implements FromField or a custom datatype that itself implements FromRow. Under the hood the database bindings inspects the Postgres oid objects and then attempts to convert them into the Haskell datatype of the field being scrutinised. This can fail at runtime if the types in the database don’t align with the expected types in the logic executing the SQL query.

Tuples
import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
 { SQL.connectUser = "example"
 , SQL.connectPassword = "example"
 , SQL.connectDatabase = "booktown"
 }

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
 conn <- SQL.connect creds
 books <- selectBooks conn
 print books

This yields the result set:

[(7808 , "The Shining" , 4156),
 (4513 , "Dune" , 1866),
 (4267 , "2001: A Space Odyssey" , 2001),
 (1608 , "The Cat in the Hat" , 1809),
 (1590 , "Bartholomew and the Oobleck" , 1809),
 (25908 , "Franklin in the Dark" , 15990),
 (1501 , "Goodnight Moon" , 2031),
 (190 , "Little Women" , 16),
 (1234 , "The Velveteen Rabbit" , 25041),
 (2038 , "Dynamic Anatomy" , 1644),
 (156 , "The Tell-Tale Heart" , 115),
 (41473 , "Programming Python" , 7805),
 (41477 , "Learning Python" , 7805),
 (41478 , "Perl Cookbook" , 7806),
 (41472 , "Practical PostgreSQL" , 1212)]

Custom Types
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
 { id_ :: Int
 , title :: T.Text
 , author_id :: Int
 } deriving (Show)

instance FromRow Book where
 fromRow = Book <$> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
 { SQL.connectUser = "example"
 , SQL.connectPassword = "example"
 , SQL.connectDatabase = "booktown"
 }

selectBooks :: SQL.Connection -> IO [Book]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books limit 4"

main :: IO ()
main = do
 conn <- SQL.connect creds
 books <- selectBooks conn
 print books

This yields the result set:
[Book { id_ = 7808 , title = "The Shining" , author_id = 4156 } , Book { id_ = 4513 , title = "Dune" , author_id = 1866 } , Book { id_ = 4267 , title = "2001: A Space Odyssey" , author_id = 2001 } , Book { id_ = 1608 , title = "The Cat in the Hat" , author_id = 1809 }]

Quasiquoter

As SQL expressions grow in complexity they often span multiple lines and sometimes its useful to just drop down to a quasiquoter to embed the whole query. The quoter here is pure, and just generates the Query object behind as a ByteString.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.SqlQQ (sql)
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
 { id_ :: Int
 , title :: T.Text
 , first_name :: T.Text
 , last_name :: T.Text
 } deriving (Show)

instance FromRow Book where
 fromRow = Book <$> field <*> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
 { SQL.connectUser = "example"
 , SQL.connectPassword = "example"
 , SQL.connectDatabase = "boottown"
 }

selectBooks :: SQL.Query
selectBooks = [sql|
 select
 books.id,
 books.title,
 authors.first_name,
 authors.last_name
 from books
 join authors on
 authors.id = books.author_id
 limit 5
|]

main :: IO ()
main = do
 conn <- SQL.connect creds
 (books :: [Book]) <- SQL.query_ conn selectBooks
 print books

This yields the result set:

[Book
 { id_ = 41472
 , title = "Practical PostgreSQL"
]
Redis

Redis is an in-memory key-value store with support for a variety of datastructures. The Haskell exposure is exposed in a Redis monad which sequences a set of redis commands taking ByteString arguments and then executes them against a connection object.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis
import Data.ByteString.Char8

session :: Redis (Either Reply (Maybe ByteString))
session = do
 set "hello" "haskell"
 get "hello"

main :: IO ()
main = do
 conn <- connect defaultConnectInfo
 res <- runRedis conn session
 print res
Redis is quite often used as a lightweight pubsub server, and the bindings integrate with the Haskell concurrency primitives so that listeners can be sparked and shared across threads off without blocking the main thread.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis
import Control.Monad
import Control.Monad.Trans
import Data.ByteString.Char8
import Control.Concurrent

subscriber :: Redis ()
subscriber =
 pubSub (subscribe ["news"]]) $ \msg -> do
 print msg
 return mempty

publisher :: Redis ()
publisher = forM_ [1..100] $ \n -> publish "news" (pack (show n))

-- connects to localhost:6379
main :: IO ()
main = do
 conn1 <- connect defaultConnectInfo
 conn2 <- connect defaultConnectInfo

 -- Fork off a publisher
 forkIO $ runRedis conn1 publisher

 -- Subscribe for messages
 runRedis conn2 subscriber

Acid State

Acid-state allows us to build a “database” for around our existing Haskell datatypes that guarantees atomic transactions. For example, we can build a simple key-value store wrapped around the Map type.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Acid
import Data.Typeable
import Data.SafeCopy
import Control.Monad.Reader (ask)

import qualified Data.Map as Map
import qualified Control.Monad.State as S

type Key = String
type Value = String

data Database = Database !(Map.Map Key Value)
 deriving (Show, Ord, Eq, Typeable)

$(deriveSafeCopy 0 'base 'Database)

insertKey :: Key -> Value -> Update Database ()
insertKey key value =
 do Database m <- S.get
 S.put (Database (Map.insert key value m))

lookupKey :: Key -> Query Database (Maybe Value)
lookupKey key =
 do Database m <- ask
 return (Map.lookup key m)

deleteKey :: Key -> Update Database ()
deleteKey key =
 do Database m <- S.get
 S.put (Database (Map.delete key m))

allKeys :: Int -> Query Database [(Key, Value)]
allKeys limit =
 do Database m <- ask
 return $(take limit (Map.toList m))

$(makeAcidic ''Database ['insertKey, 'lookupKey, 'allKeys, 'deleteKey])

fixtures :: Map.Map String String
fixtures = Map.empty

test :: Key -> Value -> IO ()
test key val = do
 database <- openLocalStateFrom "db/" (Database fixtures)
 result <- update database (InsertKey key val)
 result <- query database (AllKeys 10)
 print result
GHC

This is a very advanced section, knowledge of GHC internals is rarely necessary.

Block Diagram

The flow of code through GHC is a process of translation between several intermediate languages and optimizations and transformations thereof. A common pattern for many of these AST types is they are parametrized over a binder type and at various stages the binders will be transformed, for example the Renamer pass effectively translates the HsSyn datatype from a AST parametrized over literal strings as the user enters into a HsSyn parameterized over qualified names that includes modules and package names into a higher level Name type.

GHC Compiler

GHC Compiler Passes

- **Parser/Frontend**: An enormous AST translated from human syntax that makes explicit possible all expressible syntax (declarations, do-notation, where clauses, syntax extensions, template haskell, ...). This is unfiltered Haskell and it is enormous.
- **Renamer** takes syntax from the frontend and transforms all names to be qualified (base:Prelude.map instead of map) and any shadowed names in lambda binders transformed into unique names.
- **Typechecker** is a large pass that serves two purposes, first is the core type bidirectional inference engine where most of the work happens and the translation between the frontend Core syntax.
- **Desugarer** translates several higher level syntactic constructors
 - where statements are turned into (possibly recursive) nested let statements.
 - Nested pattern matches are expanded out into splitting trees of case statements.
 - do-notation is expanded into explicit bind statements.
 - Lots of others.
- **Simplifier** transforms many Core constructs into forms that are more adaptable to compilation. For example let statements will be floated or raised, pattern matches will simplified, inner loops will be pulled out and transformed into more optimal forms. Non-intuitively the resulting may actually be much more complex (for humans) after going through the simplifier!
• **Stg** pass translates the resulting Core into STG (Spineless Tagless G-Machine) which effectively makes all laziness explicit and encodes the thunks and update frames that will be handled during evaluation.

• **Codegen/Cmm** pass will then translate STG into Cmm (flavoured C–) a simple imperative language that manifests the low-level implementation details of runtime types. The runtime closure types and stack frames are made explicit and low-level information about the data and code (arity, updatability, free variables, pointer layout) made manifest in the info tables present on most constructs.

• **Native Code** The final pass will then translate the resulting code into either LL VM or Assembly via either through GHC’s home built native code generator (NCG) or the LL VM backend.

Information for each pass can dumped out via a rather large collection of flags. The GHC internals are very accessible although some passes are somewhat easier to understand than others. Most of the time `-ddump-simpl` and `-ddump-stg` are sufficient to get an understanding of how the code will compile, unless of course you’re dealing with very specialized optimizations or hacking on GHC itself.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-ddump-parsed</code></td>
<td>Frontend AST.</td>
</tr>
<tr>
<td><code>-ddump-rn</code></td>
<td>Output of the rename pass.</td>
</tr>
<tr>
<td><code>-ddump-tc</code></td>
<td>Output of the typechecker.</td>
</tr>
<tr>
<td><code>-ddump-splices</code></td>
<td>Output of TemplateHaskell splices.</td>
</tr>
<tr>
<td><code>-ddump-types</code></td>
<td>Typed AST representation.</td>
</tr>
<tr>
<td><code>-ddump-deriv</code></td>
<td>Output of deriving instances.</td>
</tr>
<tr>
<td><code>-ddump-ds</code></td>
<td>Output of the desugar pass.</td>
</tr>
<tr>
<td><code>-ddump-spec</code></td>
<td>Output of specialisation pass.</td>
</tr>
<tr>
<td><code>-ddump-rules</code></td>
<td>Output of applying rewrite rules.</td>
</tr>
<tr>
<td><code>-ddump-vect</code></td>
<td>Output results of vectorize pass.</td>
</tr>
<tr>
<td><code>-ddump-simpl</code></td>
<td>Ouptut of the SimplCore pass.</td>
</tr>
<tr>
<td><code>-ddump-inlinings</code></td>
<td>Output of the inliner.</td>
</tr>
<tr>
<td><code>-ddump-cse</code></td>
<td>Output of the common subexpression elimination pass.</td>
</tr>
<tr>
<td><code>-ddump-prep</code></td>
<td>The CorePrep pass.</td>
</tr>
<tr>
<td><code>-ddump-stg</code></td>
<td>The resulting STG.</td>
</tr>
<tr>
<td><code>-ddump-cmm</code></td>
<td>The resulting Cmm.</td>
</tr>
<tr>
<td><code>-ddump-opt-cmm</code></td>
<td>The resulting Cmm optimization pass.</td>
</tr>
<tr>
<td><code>-ddump-asm</code></td>
<td>The final assembly generated.</td>
</tr>
<tr>
<td><code>-ddump-llvm</code></td>
<td>The final LL VM IR generated.</td>
</tr>
</tbody>
</table>

Core

Core is the explicitly typed System-F family syntax through that all Haskell constructs can be expressed in.
To inspect the core from GHCi we can invoke it using the following flags and the following shell alias. We have explicitly disable the printing of certain metadata and longform names to make the representation easier to read.

```
alias ghci-core="ghci -ddump-simpl -dsuppress-idinfo \ 
-dsuppress-coercions -dsuppress-type-applications \ 
-dsuppress-uniques -dsuppress-module-prefixes"
```

At the interactive prompt we can then explore the core representation interactively:

```
$ ghci-core

: let f x = x + 2 ; f :: Int -> Int

====================
Simplified expression ====================
returnIO
 (: ((\ (x :: Int) -> + $fNumInt x (I# 2)) `cast` ...) ([]))

: let f x = (x, x)

====================
Simplified expression ====================
returnIO (: ((\ (t) (x :: t) -> (x, x)) `cast` ...) ([]))
```

ghc-core is also very useful for looking at GHC’s compilation artifacts.

```
$ ghc-core --no-cast --no-asm
```

Alternatively the major stages of the compiler (parse tree, core, stg, cmm, asm) can be manually outputted and inspected by passing several flags to the compiler:

```
$ ghc -ddump-to-file -ddump-parsed -ddump-simpl -ddump-stg -ddump-cmm -ddump-asm
```

Reading Core

Core from GHC is roughly human readable, but it’s helpful to look at simple human written examples to get the hang of what’s going on.

```
id :: a -> a
id x = x

id :: forall a. a -> a
id = \ (a) (x :: a) -> x

idInt :: GHC.Types.Int -> GHC.Types.Int
idInt = id @ GHC.Types.Int

compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)

compose :: forall b c a. (b -> c) -> (a -> b) -> a -> c
compose = \ (b) (c) (a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)
```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
map :: forall a b. (a -> b) -> [a] -> [b]
map =
 \ (g a) (g b) (f :: a -> b) (xs :: [a]) ->
 case xs of
 [] -> [] @ b;
 : y ys -> : b (f y) (map @ a @ b f ys)

Machine generated names are created for a lot of transformation of Core. Generally they consist of a prefix and unique identifier. The prefix is often pass specific (i.e. ds for desugar generated name s) and sometimes specific names are generated for specific automatically generated code. A list of the common prefixes and their meaning is show below.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f...</td>
<td>Dict-fun identifiers (from inst decls)</td>
</tr>
<tr>
<td>$dmop</td>
<td>Default method for 'op'</td>
</tr>
<tr>
<td>$wf</td>
<td>Worker for function 'f'</td>
</tr>
<tr>
<td>$sf</td>
<td>Specialised version of f</td>
</tr>
<tr>
<td>$gdm</td>
<td>Generated class method</td>
</tr>
<tr>
<td>$d</td>
<td>Dictionary names</td>
</tr>
<tr>
<td>$s</td>
<td>Specialized function name</td>
</tr>
<tr>
<td>$f</td>
<td>Foreign export</td>
</tr>
<tr>
<td>$pnC</td>
<td>n'th superclass selector for class C</td>
</tr>
<tr>
<td>T:C</td>
<td>Tycon for dictionary for class C</td>
</tr>
<tr>
<td>D:C</td>
<td>Data constructor for dictionary for class C</td>
</tr>
<tr>
<td>NTCo:T</td>
<td>Coercion for newtype T to its underlying runtime representation</td>
</tr>
</tbody>
</table>

Of important note is that the Λ and for type-level and value-level lambda abstraction are represented by the same symbol (\) in core, which is a simplifying detail of the GHC’s implementation but a source of some confusion when starting.

-- System-F Notation
\ a b c. (f1 : b -> c) (g : a -> b) (x1 : a). f1 (g x1)

-- Haskell Core
\ (g @ a) (g @ c) (g @ b) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

The seq function has an intuitive implementation in the Core language.
x `seq` y
One particularly notable case of the Core desugaring process is that pattern matching on overloaded numbers implicitly translates into equality test (i.e. Eq).

\[
\begin{align*}
f & 0 = 1 \\
f & 1 = 2 \\
f & 2 = 3 \\
f & 3 = 4 \\
f & 4 = 5 \\
f & _ = 0
\end{align*}
\]

\[
f :: \forall a b. (Eq a, Num a, Num b) \Rightarrow a \Rightarrow b
\]

Of course, adding a concrete type signature changes the desugar just matching on the unboxed values.
\[f :: \text{Int} \rightarrow \text{Int} \]

\[
\begin{array}{c}
\text{f} = \\
(\text{ds} :: \text{Int}) \rightarrow \\
\text{case \ ds \ of} \
\begin{array}{l}
_ \
\rightarrow \\
\text{case \ ds1 \ of} \
\begin{array}{l}
_ \
\rightarrow \\
\text{__DEFAULT} \rightarrow \text{I} \# 0; \\
0 \rightarrow \text{I} \# 1; \\
1 \rightarrow \text{I} \# 2; \\
2 \rightarrow \text{I} \# 3; \\
3 \rightarrow \text{I} \# 4; \\
4 \rightarrow \text{I} \# 5
\end{array}
\end{array}
\end{array}
\]

See:

- Core Spec
- Core By Example
- CoreSynType

Inliner

\[\text{infixr} \ 0 \ \$ \]

\[(\$) :: (a \rightarrow b) \rightarrow a \rightarrow b \]

\[f \ $ x = f x \]

Having to enter a secondary closure every time we used \((\$)\) would introduce an enormous overhead. Fortunately GHC has a pass to eliminate small functions like this by simply replacing the function call with the body of its definition at appropriate call-sites. There compiler contains a variety heuristics for determining when this kind of substitution is appropriate and the potential costs involved.

In addition to the automatic inliner, manual pragmas are provided for more granular control over inlining. It’s important to note that naive inlining quite often results in significantly worse performance and longer compilation times.

\{-# INLINE func #-\}
\{-# INLINABLE func #-\}
\{-# NOINLINE func #-\}

For example the contrived case where we apply a binary function to two arguments. The function body is small and instead of entering another closure just to apply the given function, we could in fact just inline the function application at the call site.

\{-# INLINE foo #-\}
\{-# NOINLINE bar #-\}
foo :: (a -> b -> c) -> a -> b -> c
foo f x y = f x y

bar :: (a -> b -> c) -> a -> b -> c
bar f x y = f x y

test1 :: Int
test1 = foo (+) 10 20

test2 :: Int
test2 = bar (+) 20 30

Looking at the core, we can see that in test2 the function has indeed been expanded at the call site and simply performs the addition there instead of another indirection.

test1 :: Int
test1 =
 let {
 f :: Int -> Int -> Int
 f = + $fNumInt } in
 let {
 x :: Int
 x = I# 10 } in
 let {
 y :: Int
 y = I# 20 } in
 f x y

test2 :: Int
test2 = bar (+ $fNumInt) (I# 20) (I# 30)

Cases marked with NOINLINE generally indicate that the logic in the function is using something like unsafePerformIO or some other unholy function. In these cases naive inlining might duplicate effects at multiple call-sites throughout the program which would be undesirable.

See:

- Secrets of the Glasgow Haskell Compiler inliner

Dictionaries

The Haskell language defines the notion of Typeclasses but is agnostic to how they are implemented in a Haskell compiler. GHC’s particular implementation uses a pass called the dictionary passing translation part of the elaboration phase of the typechecker which translates Core functions with typeclass constraints
into implicit parameters of which record-like structures containing the function implementations are passed.

class Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a

This class can be thought as the implementation equivalent to the following parameterized record of functions.

data DNum a = DNum (a -> a -> a) (a -> a -> a) (a -> a)

add (DNum a m n) = a
mul (DNum a m n) = m
neg (DNum a m n) = n

numDInt :: DNum Int
numDInt = DNum plusInt timesInt negateInt

numDFloat :: DNum Float
numDFloat = DNum plusFloat timesFloat negateFloat

+ :: forall a. Num a => a -> a -> a
+ = \ (a) (tpl :: Num a) ->
 case tpl of _ { D:Num _ _ _ -> tpl }

* :: forall a. Num a => a -> a -> a
* = \ (a) (tpl :: Num a) ->
 case tpl of _ { D:Num _ _ _ -> tpl }

negate :: forall a. Num a => a -> a
negate = \ (a) (tpl :: Num a) ->
 case tpl of _ { D:Num _ _ _ -> tpl }

Num and Ord have simple translation but for monads with existential type variables in their signatures, the only way to represent the equivalent dictionary is using RankNTypes. In addition a typeclass may also include superclasses which would be included in the typeclass dictionary and parameterized over the same arguments and an implicit superclass constructor function is created to pull out functions from the superclass for the current monad.

data DMonad m = DMonad
 { bind :: forall a b. m a -> (a -> m b) -> m b
 , return :: forall a. a -> m a
 }

class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
 traverse f = sequenceA . fmap f
data DTraversable t = DTraversable
 { dFunctorTraversable :: DFunctor t -- superclass dictionary
 , dFoldableTraversable :: DFoldable t -- superclass dictionary
 , traverse :: forall a. Applicative f => (a -> f b) -> t a -> f (t b)
 }

Indeed this is not that far from how GHC actually implements typeclasses. It elaborates into projection functions and data constructors nearly identical to this, and are expanded out to a dictionary argument for each typeclass constraint of every polymorphic function.

Specialization

Overloading in Haskell is normally not entirely free by default, although with an optimization called specialization it can be made to have zero cost at specific points in the code where performance is crucial. This is not enabled by default by virtue of the fact that GHC is not a whole-program optimizing compiler and most optimizations (not all) stop at module boundaries.

GHC’s method of implementing typeclasses means that explicit dictionaries are threaded around implicitly throughout the call sites. This is normally the most natural way to implement this functionality since it preserves separate compilation. A function can be compiled independently of where it is declared, not recompiled at every point in the program where it’s called. The dictionary passing allows the caller to thread the implementation logic for the types to the call-site where it can then be used throughout the body of the function.

Of course this means that in order to get at a specific typeclass function we need to project (possibly multiple times) into the dictionary structure to pluck out the function reference. The runtime makes this very cheap but not entirely free.

Many C++ compilers or whole program optimizing compilers do the opposite however, they explicitly specialize each and every function at the call site replacing the overloaded function with its type-specific implementation. We can selectively enable this kind of behavior using class specialization.

```haskell
module Specialize (spec, nonspec, f) where

{-# SPECIALIZE INLINE f :: Double -> Double -> Double #-}

f :: Floating a => a -> a -> a
f x y = exp (x + y) * exp (x + y)

nonspec :: Float
nonspec = f (10 :: Float) (20 :: Float)
```
spec :: Double
spec = f (10 :: Double) (20 :: Double)

Non-specialized

f :: forall a. Floating a => a -> a -> a
f =
\ (\ a) (\ $dFloating :: Floating a) (eta :: a) (eta1 :: a) ->
 let {
 a :: Fractional a
 a = $p1Floating @ a $dFloating } in
 let {
 $dNum :: Num a
 $dNum = $p1Fractional @ a a } in
 * @ a
 $dNum
 (exp @ a $dFloating (+ @ a $dNum eta eta1))
 (exp @ a $dFloating (+ @ a $dNum eta eta1))

In the specialized version the typeclass operations placed directly at the call site
and are simply unboxed arithmetic. This will map to a tight set of sequential
CPU instructions and is very likely the same code generated by C.

spec :: Double
spec = D# (**# (expDouble# 30.0) (expDouble# 30.0))

The non-specialized version has to project into the typeclass dictionary
($fFloatingFloat) 6 times and likely go through around 25 branches to
perform the same operation.

nonspec :: Float
nonspec =
 f @ Float $fFloatingFloat (F# (--_float 10.0)) (F# (--_float 20.0))

For a tight loop over numeric types specializing at the call site can result in
orders of magnitude performance increase. Although the cost in compile-time
can often be non-trivial and when used function used at many call-sites this can
slow GHC’s simplifier pass to a crawl.

The best advice is profile and look for large uses of dictionary projection in tight
loops and then specialize and inline in these places.

Using the SPECIALISE INLINE pragma can unintentionally cause GHC to di-
verge if applied over a recursive function, it will try to specialize itself infinitely.

Static Compilation

On Linux, Haskell programs can be compiled into a standalone statically linked
binary that includes the runtime statically linked into it.
In addition the file size of the resulting binary can be reduced by stripping unneeded symbols.

$ strip Example

upx can additionally be used to compress the size of the executable down further.

Unboxed Types

The usual numerics types in Haskell can be considered to be a regular algebraic datatype with special constructor arguments for their underlying unboxed values. Normally unboxed types and explicit unboxing are not used in normal code, they are wired-in to the compiler.

```haskell
data Int = I# Int#
```

```haskell
data Integer
    = S# Int# -- Small integers
    | J# Int# ByteArray# -- Large GMP integers
```

```haskell
data Float = F# Float#
```

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Primitive Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3#</td>
<td>GHC.Prim.Int#</td>
</tr>
<tr>
<td>3##</td>
<td>GHC.Prim.Word#</td>
</tr>
<tr>
<td>3.14#</td>
<td>GHC.Prim.Float#</td>
</tr>
<tr>
<td>3.14##</td>
<td>GHC.Prim.Double#</td>
</tr>
<tr>
<td>'c'#</td>
<td>GHC.Prim.Char#</td>
</tr>
<tr>
<td>"Haskell"##</td>
<td>GHC.Prim.Addr#</td>
</tr>
</tbody>
</table>

An unboxed type with kind # and will never unify a type variable of kind *. Intuitively a type with kind * indicates a type with a uniform runtime representation that can be used polymorphically.

- **Lifted** - Can contain a bottom term, represented by a pointer. (Int, Any, (,))
- **Unlited** - Cannot contain a bottom term, represented by a value on the stack. (Int#, (#, #))

{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-}
import GHC.Exts
import GHC.Prim

ex1 :: Bool
ex1 = gtChar# a# b#
 where
 !(C# a#) = 'a'
 !(C# b#) = 'b'

ex2 :: Int
ex2 = I# (a# ++ b#)
 where
 !(I# a#) = 1
 !(I# b#) = 2

ex3 :: Int
ex3 = (I# (1# ++ 2# ++ 3# ++ 4#))

ex4 :: (Int, Int)
ex4 = (I# (dataToTag# False), I# (dataToTag# True))

The function for integer arithmetic used in the Num typeclass for Int is just pattern matching on this type to reveal the underlying unboxed value, performing the builtin arithmetic and then performing the packing up into Int again.

plusInt :: Int -> Int -> Int
plusInt a b
case a of
 (I# a_) -> case b of
 (I# b_) -> I# (++ a_ b_);

Runtime values in Haskell are by default represented uniformly by a boxed StgClosure* struct which itself contains several payload values, which can themselves either be pointers to other boxed values or to unboxed literal values that fit within the system word size and are stored directly within the closure in memory. The layout of the box is described by a bitmap in the header for the closure which describes which values in the payload are either pointers or non-pointers.

The unpackClosure# primop can be used to extract this information at runtime by reading off the bitmap on the closure.
module Main where

import GHC.Exts
import GHC.Base
import Foreign

data Size = Size
 { ptrs :: Int
 , nptrs :: Int
 , size :: Int
 }
 deriving (Show)

unsafeSizeof :: a -> Size
unsafeSizeof a =
 case unpackClosure# a of
 (# x, ptrs, nptrs #) ->
 let header = sizeOf (undefined :: Int)
 ptr_c = I# (sizeofArray# ptrs)
 nptr_c = I# (sizeofByteArray# nptrs) `div` sizeOf (undefined :: Word)
 payload = I# (sizeofArray# ptrs +# sizeofByteArray# nptrs)
 size = header + payload
 in Size ptr_c nptr_c size

data A = A {-# UNPACK #-} !Int
data B = B !Int

main :: IO ()
main = do
 print (unsafeSizeof (A 42))
 print (unsafeSizeof (B 42))

For example the datatype with the UNPACK pragma contains 1 non-pointer and 0 pointers.

data A = A {-# UNPACK #-} !Int
 Size {ptrs = 0, nptrs = 1, size = 16}

While the default packed datatype contains 1 pointer and 0 non-pointers.

data B = B !Int
 Size {ptrs = 1, nptrs = 0, size = 9}

The closure representation for data constructors are also “tagged” at the runtime with the tag of the specific constructor. This is however not a runtime type tag since there is no way to recover the type from the tag as all constructor
simply use the sequence (0, 1, 2, ...). The tag is used to discriminate cases in
pattern matching. The builtin `dataToTag` can be used to pluck off the tag
for an arbitrary datatype. This is used in some cases when desugaring pattern
matches.

```
dataToTag :: a -> Int
```

For example:

```
-- data Bool = False / True
-- False ~ 0
-- True ~ 1

a :: (Int, Int)
a = (I# (dataToTag False), I# (dataToTag True))
-- (0, 1)

-- data Ordering = LT / EQ / GT
-- LT ~ 0
-- EQ ~ 1
-- GT ~ 2

b :: (Int, Int, Int)
b = (I# (dataToTag LT), I# (dataToTag EQ), I# (dataToTag GT))
-- (0, 1, 2)

-- data Either a b = Left a / Right b
-- Left ~ 0
-- Right ~ 1

C :: (Int, Int)
c = (I# (dataToTag (Left 0)), I# (dataToTag (Right 1)))
-- (0, 1)
```

String literals included in the source code are also translated into several primop
operations. The `Addr` type in Haskell stands for a static contagious buffer pre-
allocated on the Haskell heap that can hold a `char*` sequence. The operation
`unpackCString` can scan this buffer and fold it up into a list of Chars from
inside Haskell.

```
unpackCString :: Addr -> [Char]
```

This is done in the early frontend desugarer phase, where literals are translated
into `Addr` inline instead of giant chain of Cons’d characters. So our “Hello
World” translates into the following Core:

```
-- print "Hello World"
print (unpackCString "Hello World")
```

See:
Unboxed Values as First-Class Citizens

IO/ST

Both the IO and the ST monad have special state in the GHC runtime and share a very similar implementation. Both ST \(a \) and IO \(a \) are passing around an unboxed tuple of the form:

\[(\# \text{token}, a \#)\]

The RealWorld\# token is “deeply magical” and doesn’t actually expand into any code when compiled, but simply threaded around through every bind of the IO or ST monad and has several properties of being unique and not being able to be duplicated to ensure sequential IO actions are actually sequential. unsafePerformIO can thought of as the unique operation which discards the world token and plucks the \(a \) out, and is as the name implies not normally safe.

The PrimMonad abstracts over both these monads with an associated data family for the world token or ST thread, and can be used to write operations that generic over both ST and IO. This is used extensively inside of the vector package to allow vector algorithms to be written generically either inside of IO or ST.

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.IO (IO(..))
import GHC.Prim (State#, RealWorld)
import GHC.Base (realWorld#)

instance Monad IO where
 m >> k = m >>= _ -> k
 return = returnIO
 (>>=) = bindIO
 fail s = failIO s

returnIO :: a -> IO a
returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \s -> case m s of (# new_s, a #) -> unIO (k a) new_s

thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO $ \s -> case m s of (# new_s, _ #) -> unIO k new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a
import GHC.IO (IO(..))
import GHC.ST (ST(..))
import GHC.Prim (State#, RealWorld)
import GHC.Base (realWorld#)

class Monad m => PrimMonad m where
 type PrimState m
 primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
 internal :: m a -> State# (PrimState m) -> (# State# (PrimState m), a #)

instance PrimMonad IO where
 type PrimState IO = RealWorld
 primitive = IO
 internal (IO p) = p

instance PrimMonad (ST s) where
 type PrimState (ST s) = s
 primitive = ST
 internal (ST p) = p

See:
 • Evaluation order and state tokens

ghc-heap-view

Through some dark runtime magic we can actually inspect the StgClosure
structures at runtime using various C and Cmm hacks to probe at the fields
of the structure’s representation to the runtime. The library ghc-heap-view
can be used to introspect such things, although there is really no use for this
kind of thing in everyday code it is very helpful when studying the GHC internals
to be able to inspect the runtime implementation details and get at the raw bits
underlying all Haskell types.
-- Constr
clo <- getClosureData $! ([1, 2, 3] :: [Int])
print clo

-- Thunk
let thunk = id (1+1)
clo <- getClosureData thunk
print clo

-- evaluate to WHNF
thunk `seq` return ()

-- Indirection
clo <- getClosureData thunk
print clo

-- force garbage collection
performGC

-- Value
clo <- getClosureData thunk
print clo

A constructor (in this for cons constructor of list type) is represented by a CONSTR closure that holds two pointers to the head and the tail. The integer in the head argument is a static reference to the pre-allocated number and we see a single static reference in the SRT (static reference table).

ConsClosure {
 info = StgInfoTable {
 ptrs = 2,
 nptrs = 0,
 tipe = CONSTR_2_0,
 srtlen = 1
 },
 ptrArgs = [0x0000000000074aba8/1, 0x00007fca10504260/2],
 dataArgs = [],
 pkg = "ghc-prim",
 modl = "GHC.Types",
 name = ":"
}

We can also observe the evaluation and update of a thunk in process (id (1+1)). The initial thunk is simply a thunk type with a pointer to the code to evaluate it to a value.

ThunkClosure {
 info = StgInfoTable {
 ptrs = 2,
 nptrs = 0,
 tipe = THUNK_2_0,
 srtlen = 1
 },
 ptrArgs = [0x0000000000074aba8/1, 0x00007fca10504260/2],
 dataArgs = [],
 pkg = "ghc-prim",
 modl = "GHC.Types",
 name = ":"
}
When forced it is then evaluated and replaced with an Indirection closure which points at the computed value.

```
BlackholeClosure {
  info = StgInfoTable {
    ptrs = 1,
    nptrs = 0,
    tipe = BLACKHOLE,
    srtlen = 0
  },
  indirectee = 0x00007fca10511e88/1
}
```

When the copying garbage collector passes over the indirection, it then simply replaces the indirection with a reference to the actual computed value computed by `indirectee` so that future access does need to chase a pointer through the indirection pointer to get the result.

```
ConsClosure {
  info = StgInfoTable {
    ptrs = 0,
    nptrs = 1,
    tipe = CONSTR_0_1,
    srtlen = 0
  },
  ptrArgs = [],
  dataArgs = [2],
  pkg = "integer-gmp",
  modl = "GHC.Integer.Type",
  name = "$#"
}
```

STG

After being compiled into Core, a program is translated into a very similar intermediate form known as STG (Spineless Tagless G-Machine) an abstract machine model that makes all laziness explicit. The spineless indicates that function applications in the language do not have a spine of applications of
functions are collapsed into a sequence of arguments. Currying is still present in the semantics since arity information is stored and partially applied functions will evaluate differently than saturated functions.

```
-- Spine
f x y z = App (App (App f x) y) z
```

```
-- Spineless
f x y z = App f [x, y, z]
```

All let statements in STG bind a name to a lambda form. A lambda form with no arguments is a thunk, while a lambda-form with arguments indicates that a closure is to be allocated that captures the variables explicitly mentioned.

Thunks themselves are either reentrant (✓) or updatable (✓) indicating that the thunk and either yields a value to the stack or is allocated on the heap after the update frame is evaluated. All subsequent entry’s of the thunk will yield the already-computed value without needing to redo the same work.

A lambda form also indicates the static reference table a collection of references to static heap allocated values referred to by the body of the function.

For example turning on `-ddump-stg` we can see the expansion of the following compose function.

```
-- Frontend
compose f g = \x -> f (g x)
```

```
-- Core
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t
compose = \ (t) (t1) (t2) (f :: t1 -> t) (g :: t2 -> t1) (x :: t2) ->
    f (g x)
```

```
-- STG
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t
    = \[f g x] let { sat :: t1 = \[] g x; } in f sat;
SRT(compose): []
```

For a more sophisticated example, let’s trace the compilation of the factorial function.

```
-- Frontend
fac :: Int -> Int -> Int
fac a 0 = a
fac a n = fac (n*a) (n-1)
```

```
-- Core
Rec {
fac :: Int -> Int -> Int
fac =
    \ (a :: Int) (ds :: Int) ->
```
case ds of wild { I# ds1 ->
case ds1 of _ {
 _DEFAULT ->
 fac (* @ Int $fNumInt wild a) (- @ Int $fNumInt wild (I# 1));
 0 -> a
 }
}
}
end Rec }

-- STG
fac ::: Int -> Int -> Int = \r srt:(0,*bitmap*) [a ds]
 case ds of wild {
 I# ds1 ->
 case ds1 of _ {
 _DEFAULT ->
 let {
 sat ::: Int = \u srt:(1,*bitmap*) []
 let { sat ::: Int = NO_CCS I! [1]; } in - $fNumInt wild sat;
 let { sat ::: Int = \u srt:(1,*bitmap*) [] * $fNumInt wild a;
 } in fac sat sat;
 0 -> a;
 }
 };
 }
SRT(fac): [fac, $fNumInt]

Notice that the factorial function allocates two thunks (look for \u) inside of
the loop which are updated when computed. It also includes static references to
both itself (for recursion) and the dictionary for instance of Num typeclass over
the type Int.

Worker/Wrapper

With -O2 turned on GHC will perform a special optimization known as the
Worker-Wrapper transformation which will split the logic of the factorial function
across two definitions, the worker will operate on stack unboxed allocated
machine integers which compiles into a tight inner loop while the wrapper calls
into the worker and collects the end result of the loop and packages it back up
into a boxed heap value. This can often be an order of magnitude faster than
the naive implementation which needs to pack and unpack the boxed integers
on every iteration.

-- Worker
$wfac ::: Int# -> Int# -> Int# = \r [ww ww1]
 case ww1 of ds {
```haskell
-- DEFAULT ->
  case *# [ds 1] of sat {
    _# ->
      case *# [ds ww] of sat { _# DEFAULT -> $wfac sat sat; }
    0 -> ww
  };
SRT($wfac): []

-- Wrapper
fac :: Int -> Int -> Int = \r [w w1]
  case w of _ {
    I# ww ->
      case w1 of _ {
        I# w1 -> case $wfac ww w1 of ww2 { _# DEFAULT -> I# [ww2]; }
      }
  };
SRT(fac): []
See:
  • Writing Haskell as Fast as C

Z-Encoding

The Z-encoding is Haskell’s convention for generating names that are safely represented in the compiler target language. Simply put the z-encoding renames many symbolic characters into special sequences of the z character.

<table>
<thead>
<tr>
<th>String</th>
<th>Z-Encoded String</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>foo</td>
</tr>
<tr>
<td>z</td>
<td>zz</td>
</tr>
<tr>
<td>Z</td>
<td>ZZ</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>()</td>
<td>Z0T</td>
</tr>
<tr>
<td>(,)</td>
<td>Z2T</td>
</tr>
<tr>
<td>(,,,)</td>
<td>Z3T</td>
</tr>
<tr>
<td>_</td>
<td>zu</td>
</tr>
<tr>
<td>(</td>
<td>ZL</td>
</tr>
<tr>
<td>)</td>
<td>ZR</td>
</tr>
<tr>
<td>:</td>
<td>ZC</td>
</tr>
<tr>
<td>#</td>
<td>zh</td>
</tr>
<tr>
<td>.</td>
<td>zi</td>
</tr>
<tr>
<td>(,#)</td>
<td>Z2H</td>
</tr>
<tr>
<td>(-&gt;)</td>
<td>ZLzmzgZR</td>
</tr>
</tbody>
</table>
```

309
In this way we don’t have to generate unique unidentifiable names for character rich names and can simply have a straightforward way to translate them into something unique but identifiable.

So for some example names from GHC generated code:

<table>
<thead>
<tr>
<th>Z-Encoded String</th>
<th>Decoded String</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZCMain_main_closure</td>
<td>:Main_main_closure</td>
</tr>
<tr>
<td>base_GHCziBase_map_closure</td>
<td>base_GHC.Base_map_closure</td>
</tr>
<tr>
<td>base_GHCziInt_I32zh_con_info</td>
<td>base_GHC.Int_I32#_con_info</td>
</tr>
<tr>
<td>ghczmprim_GHCziTuple_Z3T_con_info</td>
<td>ghc-prim_GHC.Tuple_(())._con_in</td>
</tr>
<tr>
<td>ghczmprim_GHCziTypes_ZC_con_info</td>
<td>ghc-prim_GHC.Types_:._con_info</td>
</tr>
</tbody>
</table>

Cmm

Cmm is GHC’s complex internal intermediate representation that maps directly onto the generated code for the compiler target. Cmm code generated from Haskell is CPS-converted, all functions never return a value, they simply call the next frame in the continuation stack. All evaluation of functions proceed by indirectly jumping to a code object with its arguments placed on the stack by the caller.

This is drastically different than C’s evaluation model, where are placed on the stack and a function yields a value to the stack after it returns.

There are several common suffixes you’ll see used in all closures and function names:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No argument</td>
</tr>
<tr>
<td>p</td>
<td>Garage Collected Pointer</td>
</tr>
<tr>
<td>n</td>
<td>Word-sized non-pointer</td>
</tr>
<tr>
<td>l</td>
<td>64-bit non-pointer (long)</td>
</tr>
<tr>
<td>v</td>
<td>Void</td>
</tr>
<tr>
<td>f</td>
<td>Float</td>
</tr>
<tr>
<td>d</td>
<td>Double</td>
</tr>
<tr>
<td>v16</td>
<td>16-byte vector</td>
</tr>
<tr>
<td>v32</td>
<td>32-byte vector</td>
</tr>
<tr>
<td>v64</td>
<td>64-byte vector</td>
</tr>
</tbody>
</table>

Cmm Registers
There are 10 registers that described in the machine model. Sp is the pointer to top of the stack, $SpLim$ is the pointer to last element in the stack. Hp is the heap pointer, used for allocation and garbage collection with $HpLim$ the current heap limit.

The $R1$ register always holds the active closure, and subsequent registers are arguments passed in registers. Functions with more than 10 values spill into memory.

- Sp
- $SpLim$
- Hp
- $HpLim$
- $HpAlloc$
- $R1$
- $R2$
- $R3$
- $R4$
- $R5$
- $R6$
- $R7$
- $R8$
- $R9$
- $R10$

Examples

To understand Cmm it is useful to look at the code generated by the equivalent Haskell and slowly understand the equivalence and mechanical translation maps one to the other.

There are generally two parts to every Cmm definition, the info table and the entry code. The info table maps directly $StgInfoTable$ struct and contains various fields related to the type of the closure, its payload, and references. The code objects are basic blocks of generated code that correspond to the logic of the Haskell function/constructor.

For the simplest example consider a constant static constructor. Simply a function which yields the Unit value. In this case the function is simply a constructor with no payload, and is statically allocated.

Haskell:

```
unit = ()
```

Cmm:

```
[section "data" {
    unit_closure:
        const ()_static_info;
}]
```
Consider a static constructor with an argument.

Haskell:

```haskell
con :: Maybe ()
con = Just ()
```

Cmm:

```cmm
[section "data" {
    con_closure:
        const Just_static_info;
        const ()_closure+1;
        const 1;
}
]
```

Consider a literal constant. This is a static value.

Haskell:

```haskell
lit :: Int
lit = 1
```

Cmm:

```cmm
[section "data" {
    lit_closure:
        const I#_static_info;
        const 1;
}
]
```

Consider the identity function.

Haskell:

```haskell
id x = x
```

Cmm:

```cmm
[section "data" {
    id_closure:
        const id_info;
},
    id_info() {
        label: id_info
        rep:HeapRep static { Func {arity: 1 fun_type: ArgSpec 5} }
    }
    ch1:
    
    R1 = R2;
    jump stg_ap_0_fast; // R1
}
]
```

Consider the constant function.

Haskell:
constant x y = x

Cmm:
[section "data" {
 constant_closure:
 const constant_info;
},
constant_info()
 { label: constant_info
 rep:HeapRep static { Fun {arity: 2 fun_type: ArgSpec 12} }
 }
}

cgT:
 R1 = R2;
 jump stg_ap_0_fast; // [R1]
}

Consider a function where application of a function (of unknown arity) occurs.

Haskell:
compose f g x = f (g x)

Cmm:
[section "data" {
 compose_closure:
 const compose_info;
},
compose_info()
 { label: compose_info
 rep:HeapRep static { Fun {arity: 3 fun_type: ArgSpec 20} }
 }
}

ch9:
 Hp = Hp + 32;
 if (Hp > HpLim) goto chd;
 I64[Hp - 24] = stg_ap_2_upd_info;
 I64[Hp - 8] = R3;
 I64[Hp + 0] = R4;
 R1 = R2;
 R2 = Hp - 24;
 jump stg_ap_p_fast; // [R1, R2]
che:
 R1 = compose_closure;
 jump stg_gc_fun; // [R1, R4, R3, R2]
chd:
 HpAlloc = 32;
 goto che;
}]

313
Consider a function which branches using pattern matching:

Haskell:

```haskell
match :: Either a a -> a
match x = case x of
    Left a -> a
    Right b -> b
```

Cmm:

```cmm
[section "data" {
    match_closure:
        const match_info;
},
sio_ret() {
    { label: sio_info
        rep:StackRep []
    }

cil:
    _ciM::I64 = R1 & 7;
    if (_ciM::I64 >= 2) goto ciN;
    R1 = I64[R1 + 7];
    Sp = Sp + 8;
    jump stg_ap_0_fast; // [R1]

    ciN:
        R1 = I64[R1 + 6];
        Sp = Sp + 8;
        jump stg_ap_0_fast; // [R1]
    },
    match_info() {
        { label: match_info
            rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} } }
    }

ciP:
    if (Sp - 8 < SpLim) goto ciR;
    R1 = R2;
    I64[Sp - 8] = sio_info;
    Sp = Sp - 8;
    if (R1 & 7 != 0) goto ciU;
    jump I64[R1]; // [R1]

    ciR:
        R1 = match_closure;
        jump stg_gc_fun; // [R1, R2]
    ciU: jump sio_info; // [R1]
}

Macros

314
Cmm itself uses many macros to stand for various constructs, many of which are defined in an external C header file. A short reference for the common types:

<table>
<thead>
<tr>
<th>Cmm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_</td>
<td>char</td>
</tr>
<tr>
<td>D_</td>
<td>double</td>
</tr>
<tr>
<td>F_</td>
<td>float</td>
</tr>
<tr>
<td>W_</td>
<td>word</td>
</tr>
<tr>
<td>P_</td>
<td>garbage collected pointer</td>
</tr>
<tr>
<td>I_</td>
<td>int</td>
</tr>
<tr>
<td>L_</td>
<td>long</td>
</tr>
<tr>
<td>FN_</td>
<td>function pointer (no arguments)</td>
</tr>
<tr>
<td>EF_</td>
<td>extern function pointer</td>
</tr>
<tr>
<td>I8</td>
<td>8-bit integer</td>
</tr>
<tr>
<td>I16</td>
<td>16-bit integer</td>
</tr>
<tr>
<td>I32</td>
<td>32-bit integer</td>
</tr>
<tr>
<td>I64</td>
<td>64-bit integer</td>
</tr>
</tbody>
</table>

Many of the predefined closures (stg_ap_p_fast, etc) are themselves mechanically generated and more or less share the same form (a giant switch statement on closure type, update frame, stack adjustment). Inside of GHC is a file named GenApply.hs that generates most of these functions. See the Gist link in the reading section for the current source file that GHC generates. For example the output for stg_ap_p_fast.

```c
stg_ap_p_fast
{ _W_ info;
 W arity;
 if (GETTAG(R1)==1) {
 Sp_adj(0);
 jump %GET_ENTRY(R1-1) [R1,R2];
 }
 if (Sp - WDS(2) < SpLim) {
 Sp_adj(-2);
 W[Sp+WDS(1)] = R2;
 Sp(0) = stg_ap_p_info;
 jump __stg_gc_enter_1 [R1];
 }
 R1 = UNTAG(R1);
 info = %GET_STD_INFO(R1);
 switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(INFO_TYPE(info))) {
 case FUN,
 FUN_1_0,
 FUN_0_1,
 FUN_2_0,
```
FUN_1_1,
FUN_0_2,
FUN_STATIC: {
arity = TO_W_(StgFunInfoExtra arity(%GET_FUN_INFO(R1)));
ASSERT(arity > 0);
if (arity == 1) {
    Sp_adj(0);
    R1 = R1 + 1;
    jump %GET_ENTRY(UNTAG(R1)) [R1,R2];
} else {
    Sp_adj(-2);
    W_[Sp+WDS(1)] = R2;
    if (arity < 8) {
        R1 = R1 + arity;
    }
    BUILD_PAP(1,1,stg_ap_p_info,FUN);
}
}
default: {
    Sp_adj(-2);
    W_[Sp+WDS(1)] = R2;
    jump RET_LBL(stg_ap_p) [];
}
}

Handwritten Cmm can be included in a module manually by first compiling it through GHC into an object and then using a special FFI invocation.

#include "Cmm.h"

factorial {
    entry:
        W_ n ;
        W_ acc;
        n = R1 ;
        acc = n ;
        n = n - 1 ;

    for:
        if (n <= 0 ) {
            RET_N(acc);
        } else {
            acc = acc * n ;
            n = n - 1 ;
            goto for ;
        }
module Main where

import GHC.Prim
import GHC.Word

foreign import prim "factorial" factorial_cmm :: Word# -> Word#

factorial :: Word64 -> Word64
factorial (W64# n) = W64# (factorial_cmm n)

main :: IO ()
main = print (factorial 5)

See:

- CmmType
- MiscClosures
- StgCmmArgRep

Cmm Runtime:

- Apply.cmm
- StgStdThunks.cmm
- StgMiscClosures.cmm
- PrimOps.cmm
- Updates.cmm
- Precompiled Closures (Autogenerated Output)

Optimization Hacks

Tables Next to Code

GHC will place the info table for a toplevel closure directly next to the entry-code for the objects in memory such that the fields from the info table can be accessed by pointer arithmetic on the function pointer to the code itself. Not performing this optimization would involve chasing through one more pointer
to get to the info table. Given how often info-tables are accessed using the tables-next-to-code optimization results in a tractable speedup.

**Pointer Tagging**

Depending on the type of the closure involved, GHC will utilize the last few bits in a pointer to the closure to store information that can be read off from the bits of pointer itself before jumping into or access the info tables. For thunks this can be information like whether it is evaluated to WHNF or not, for constructors it contains the constructor tag (if it fits) to avoid an info table lookup.

Depending on the architecture the tag bits are either the last 2 or 3 bits of a pointer.

// 32 bit arch
TAG_BITS = 2

// 64-bit arch
TAG_BITS = 3

These occur in Cmm most frequently via the following macro definitions:

```c
#define TAG_MASK ((1 << TAG_BITS) - 1)
#define UNTAG(p) (p & ~TAG_MASK)
#define GETTAG(p) (p & TAG_MASK)
```

So for instance in many of the precompiled functions, there will be a test for whether the active closure R1 is already evaluated.

```c
if (GETTAG(R1)==1) {
 Sp_adj(0);
 jump %GET_ENTRY(R1-1) [R1,R2];
}
```

**Interface Files**

During compilation GHC will produce interface files for each module that are the binary encoding of specific symbols (functions, typeclasses, etc) exported by that modules as well as any package dependencies it itself depends on. This is effectively the serialized form of the ModGuts structure used internally in the compiler. The internal structure of this file can be dumped using the `--show-iface` flag. The precise structure changes between versions of GHC.

```bash
$ ghc --show-iface let.hi
Magic: Wanted 33214052,
 got 33214052
Version: Wanted [7, 0, 8, 4],
 got [7, 0, 8, 4]
Way: Wanted [],
```

Profiling

EKG

EKG is a monitoring tool that can monitor various aspect of GHC’s runtime alongside an active process. The interface for the output is viewable within a browser interface. The monitoring process is forked off (in a system thread) from the main process.

{-# Language OverloadedStrings #-}

import Control.Monad
import System.Remote.Monitoring

main :: IO ()
main = do
  ekg <- forkServer "localhost" 8000
  putStrLn "Started server on http://localhost:8000"
  forever $ getLine >>= putStrLn

Figure 11:

RTS Profiling

The GHC runtime system can be asked to dump information about allocations and percentage of wall time spent in various portions of the runtime system.

$ ./program +RTS -s

1,939,784 bytes allocated in the heap
11,160 bytes copied during GC
44,416 bytes maximum residency (2 sample(s))
21,120 bytes maximum slop
  1 MB total memory in use (0 MB lost due to fragmentation)

<table>
<thead>
<tr>
<th></th>
<th>Tot time (elapsed)</th>
<th>Avg pause</th>
<th>Max pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 0</td>
<td>2 colls, 0 par</td>
<td>0.00s</td>
<td>0.00s</td>
</tr>
<tr>
<td>Gen 1</td>
<td>2 colls, 0 par</td>
<td>0.00s</td>
<td>0.00s</td>
</tr>
<tr>
<td>INIT time</td>
<td>0.00s</td>
<td>(0.00s elapsed)</td>
<td></td>
</tr>
<tr>
<td>MUT time</td>
<td>0.00s</td>
<td>(0.01s elapsed)</td>
<td></td>
</tr>
</tbody>
</table>

320
GC time 0.00s (0.00s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.01s (0.01s elapsed)

%GC time 5.0% (7.1% elapsed)

Alloc rate 398,112,898 bytes per MUT second

Productivity 91.4% of total user, 128.8% of total elapsed

Productivity indicates the amount of time spent during execution compared to the time spent garbage collecting. Well tuned CPU bound programs are often in the 90-99% range of productivity range.

In addition individual function profiling information can be generated by compiling the program with `-prof` flag. The resulting information is outputted to a .prof file of the same name as the module. This is useful for tracking down hotspots in the program.

$ ghc -O2 program.hs -prof -auto-all
$ ./program +RTS -p
$ cat program.prof

Mon Oct 27 23:00 2014 Time and Allocation Profiling Report (Final)

program +RTS -p -RTS

total time = 0.01 secs (7 ticks @ 1000 us, 1 processor)
total alloc = 1,937,336 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc
CAF Main 100.0 97.2
CAF GHC.IO.Handle.FD 0.0 1.8

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 42 0 0.0 0.7 100.0 100.0
CAF Main 83 0 100.0 97.2 100.0 97.2
CAF GHC.IO.Encoding 78 0 0.0 0.1 0.0 0.1
CAF GHC.IO.Handle.FD 77 0 0.0 1.8 0.0 1.8
CAF GHC.Conc.Signal 74 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 69 0 0.0 0.0 0.0 0.0
CAF GHC.Show 60 0 0.0 0.0 0.0 0.0

321
Languages

unbound

Several libraries exist to mechanize the process of writing name capture and substitution, since it is largely mechanical. Probably the most robust is the unbound library. For example we can implement the infer function for a small Hindley-Milner system over a simple typed lambda calculus without having to write the name capture and substitution mechanics ourselves.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}

module Infer where

import Data.String
import Data.Map
import Control.Monad.Error
import qualified Data.Map as Map
import qualified Unbound.LocallyNameless as NL
import Unbound.LocallyNameless hiding (Subst, compose)

data Type
  = TVar (Name Type)
  | TArr Type Type
  deriving (Show)

data Expr
  = Var (Name Expr)
  | Lam (Bind (Name Expr) Expr)
  | App Expr Expr
  | Let (Bind (Name Expr) Expr)
  deriving (Show)

$(derive [''Type, ''Expr])

instance IsString Expr where
  fromString = Var . fromString
instance IsString Type where
  fromString = TVar . fromString
instance IsString (Name Expr) where
fromString = string2Name
instance IsString (Name Type) where
    fromString = string2Name
instance Eq Type where
    (==) = eqType

eqType :: Type -> Type -> Bool
eqType (TVar v1) (TVar v2) = v1 == v2
eqType _ _ = False

uvar :: String -> Expr
uvar x = Var (s2n x)

tvar :: String -> Type
tvar x = TVar (s2n x)

instance Alpha Type
instance Alpha Expr

instance NL.Subst Type Type where
    isvar (TVar v) = Just (SubstName v)
    isvar _ = Nothing

instance NL.Subst Expr Expr where
    isvar (Var v) = Just (SubstName v)
    isvar _ = Nothing

instance NL.Subst Expr Type where

data TypeError
    = UnboundVariable (Name Expr)
    | GenericTypeError
    deriving (Show)

instance Error TypeError where
    noMsg = GenericTypeError

type Env = Map (Name Expr) Type
type Constraint = (Type, Type)
type Infer = ErrorT TypeError FreshM

empty :: Env
empty = Map.empty
freshtv :: Infer Type
freshtv = do
  x <- fresh "_t"
  return $ TVar x

infer :: Env -> Expr -> Infer (Type, [Constraint])
infer env expr = case expr of
  Lam b -> do
    (n,e) <- unbind b
tv <- freshtv
    let env' = Map.insert n tv env
    (t, cs) <- infer env' e
    return (TArr tv t, cs)
  App e1 e2 -> do
    (t1, cs1) <- infer env e1
    (t2, cs2) <- infer env e2
    tv <- freshtv
    return (tv, (t1, TArr t2 tv) : cs1 ++ cs2)
  Var n -> do
    case Map.lookup n env of
      Nothing -> throwError $ UnboundVariable n
      Just t -> return (t, [])
  Let b -> do
    (n, e) <- unbind b
    (tBody, csBody) <- infer env e
    let env' = Map.insert n tBody env
    (t, cs) <- infer env' e
    return (t, cs ++ csBody)

unbound-generics

Recently unbound was ported to use GHC.Generics instead of Template Haskell.
The API is effectively the same, so for example a simple lambda calculus could
be written as:

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}

module LC where

import Unbound.Generics.LocallyNameless
import Unbound.Generics.LocallyNameless.Internal.Fold (toListOf)

import GHC.Generics

import Data.Typeable (Typeable)
import Data.Set as S
import Control.Monad.Reader (Reader, runReader)

data Exp = Var (Name Exp)
  | Lam (Bind (Name Exp) Exp)
  | App Exp Exp
  deriving (Show, Generic, Typeable)

instance Alpha Exp

instance Subst Exp Exp where
  isvar (Var x) = Just (SubstName x)
  isvar _ = Nothing

fvSet :: (Alpha a, Typeable b) => a -> S.Set (Name b)
fvSet = S.fromList . toListOf fv

type M a = FreshM a

(=~) :: Exp -> Exp -> M Bool
e1 =~ e2 | e1 `aeq` e2 = return True
e1 =~ e2 = do
  e1' <- red e1
  e2' <- red e2
  if e1' `aeq` e1 && e2' `aeq` e2
    then return False
    else e1' =~ e2'

-- Reduction
red :: Exp -> M Exp
red (App e1 e2) = do
  e1' <- red e1
  e2' <- red e2
  case e1' of
Lam bnd -> do
   (x, e1'') <- unbind bnd
   return $ subst x e2' e1''
   otherwise -> return $ App e1' e2'
red (Lam bnd) = do
   (x, e) <- unbind bnd
   e' <- red e
   case e of
      App e1 (Var y) | y == x && x `S.notMember` fvSet e1 -> return e1
      otherwise -> return (Lam (bind x e'))
red (Var x) = return $(Var x)

x :: Name Exp
x = string2Name "x"

y :: Name Exp
y = string2Name "y"

z :: Name Exp
z = string2Name "z"

s :: Name Exp
s = string2Name "s"

lam :: Name Exp -> Exp -> Exp
lam x y = Lam (bind x y)

zero = lam s (lam z (Var z))
one = lam s (lam z (App (Var s) (Var z)))
two = lam s (lam z (App (Var s) (App (Var s) (Var z)))))
three = lam s (lam z (App (Var s) (App (Var s) (App (Var s) (Var z)))))

plus = lam x (lam y (lam s (lam z (App (App (Var x) (Var s)) (App (App (Var y) (Var s)) (Var z)))))
true = lam x (lam y (Var x))
false = lam x (lam y (Var y))
if_ x y z = (App (App x y) z)

main :: IO ()
main = do
   print $ lam x (Var x) `aeq` lam y (Var y)
   print $ not (lam x (Var y) `aeq` lam x (Var x))
   print $ lam x (App (lam y (Var x)) (lam y (Var y))) == (lam y (Var y))
   print $ lam x (App (Var y) (Var x)) == Var y
   print $ if_ true (Var x) (Var y) == Var x

326
print $ if_ false (Var x) (Var y) =- Var y
print $ App (App plus one) two =- three

See:
- unbound-generics

**llvm-general**

LLVM is a library for generating machine code. The llvm-general bindings provide a way to model, compile and execute LLVM bytecode from within the Haskell runtime.

```haskell
module Standalone where

-- Pretty Printer
import LLVM.General.Pretty (ppllvm)

-- AST
import qualified LLVM.General.AST as AST
import qualified LLVM.General.AST.Linkage as Linkage
import qualified LLVM.General.AST.Visibility as Visibility
import qualified LLVM.General.AST.CallingConvention as Convention

import Data.Text.Lazy.IO as TIO

astModule :: AST.Module
astModule = AST.Module
 { AST.moduleName = "example-llvm-module"
 , AST.moduleDataLayout = Nothing
 , AST.moduleTargetTriple = Nothing
 , AST.moduleDefinitions = [AST.GlobalDefinition
 (AST.Function
 Linkage.External
 Visibility.Default
 Nothing
 Convention.C
 []
 (AST.IntegerType 8)
 (AST.Name "f")
 ([(AST.Parameter (AST.IntegerType 8) (AST.Name "x") [])], False)
 []
 Nothing
 Nothing
 0
 Nothing
 Nothing
 Nothing
]
```
Nothing

[ AST.BasicBlock
  (AST.Name "entry")
  []
  (AST.Do
    (AST.Ret
      (Just
        (AST.LocalReference
          (AST.IntegerType 8)
          (AST.Name "x")
        )
      )
    )
  )
]
]
]
]
]
]} 

main :: IO ()
main = TIO.putStrLn (ppllvm astModule)

Generates the following textual LLVM IR which can then be executed using the JIT in the llvm-general package or passed to the various llvm commandline utilities.

; ModuleID = 'example-llvm-module'

define i8 @f(i8 %x){
  entry:
    ret i8 %x
} 

See:
• Minimal Example of LLVM Haskell JIT
• Implementing a JIT Compiled Language with Haskell and LLVM

pretty

Pretty printer combinators compose logic to print strings.

<table>
<thead>
<tr>
<th>Combinators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;&gt;</td>
<td>Concatenation</td>
</tr>
<tr>
<td>&lt;+&gt;</td>
<td>Spaced concatenation</td>
</tr>
<tr>
<td>char</td>
<td>Renders a character as a Doc</td>
</tr>
</tbody>
</table>

328
Combinators

{--# LANGUAGE FlexibleInstances #-}

import Text.PrettyPrint
import Text.Show.Pretty (ppShow)

parensIf :: Bool -> Doc -> Doc
parensIf True = parens
parensIf False = id

type Name = String

data Expr
    = Var String
    | Lit Ground
    | App Expr Expr
    | Lam Name Expr
    deriving (Eq, Show)

data Ground
    = LInt Int
    | LBool Bool
    deriving (Show, Eq, Ord)

class Pretty p where
    ppr :: Int -> p -> Doc

instance Pretty String where
    ppr _ x = text x

instance Pretty Expr where
    ppr _ (Var x) = text x
    ppr _ (Lit (LInt a)) = text (show a)
    ppr _ (Lit (LBool b)) = text (show b)

    ppr p e@(App _ _) =
      let (f, xs) = viewApp e in
      let args = sep $ map (ppr (p+1)) xs in
      parensIf (p>0) $ ppr p f <+> args

    ppr p e@(Lam _ _) =
      let body = ppr (p+1) (viewBody e) in
let vars = map (ppr 0) (viewVars e) in
parensIf (p>0) $ char '\' <> hsep vars <> text '.' <> text body

viewVars :: Expr -> [Name]
viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr
viewBody (Lam _ a) = viewBody a
viewBody x = x

viewApp :: Expr -> (Expr, [Expr])
viewApp (App e1 e2) = go e1 [e2]
where
go (App a b) xs = go a (b : xs)
go f xs = (f, xs)

ppexpr :: Expr -> String
ppexpr = render . ppr 0

s, k, example :: Expr
s = Lam "f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x"))))))
k = Lam "x" (Lam "y" (Var "x"))
example = App s k

main :: IO ()
main = do
  putStrLn $ ppexpr s
  putStrLn $ ppShow example

The pretty printed form of the \texttt{k} combinator:
\[
\lambda f \ g \ x. \ (f \ (g \ x))
\]

The \texttt{Text.Show.Pretty} library can be used to pretty print nested data structures in a more human readable form for any type that implements \texttt{Show}. For example a dump of the structure for the AST of SK combinator with \texttt{ppShow}.

\texttt{App}
\[
(\texttt{Lam} \ "f" (\texttt{Lam} \ "g" (\texttt{Lam} \ "x" (\texttt{App} \ (\texttt{Var} \ "f") (\texttt{App} \ (\texttt{Var} \ "g") (\texttt{Var} \ "x"))))) (\texttt{Lam} \ "x" (\texttt{Lam} \ "y" (\texttt{Var} \ "x"))))
\]

Adding the following to your \texttt{ghci.conf} can be useful for working with deeply nested structures interactively.

\texttt{import Text.Show.Pretty (ppShow)}

\texttt{let pprint x = putStrLn$ ppShow x}
wl-pprint-text

Combinators

\[
\begin{align*}
\text{renderPretty} &: \text{Float} \to \text{Int} \to \text{Doc} \to \text{SimpleDoc} \\
\text{renderCompact} &: \text{Doc} \to \text{SimpleDoc} \\
\text{renderOneLine} &: \text{Doc} \to \text{SimpleDoc}
\end{align*}
\]

See:

Monadic API

- \(\text{wl-pprint-text}\)

Haskeline

Haskeline is cross-platform readline support which plays nice with GHCi as well.

\[
\begin{align*}
\text{runInputT} &: \text{Settings IO} \to \text{InputT IO a} \to \text{IO a} \\
\text{getInputLine} &: \text{String} \to \text{InputT IO (Maybe String)}
\end{align*}
\]

\[
\begin{align*}
\text{import} & \text{Control.Monad.Trans} \\
\text{import} & \text{System.Console.Haskeline}
\end{align*}
\]

\[
\begin{align*}
\text{type} \quad & \text{Repl} \ a = \text{InputT IO a} \\
\text{process} &: \text{String} \to \text{IO ()} \\
\text{process} & = \text{putStrLn}
\end{align*}
\]

\[
\begin{align*}
\text{repl} &: \text{Repl ()} \\
\text{repl} & = \text{do} \\
& \quad \text{minput} <- \text{getInputLine} "\text{Repl}\" \\
& \quad \text{case} \ \text{minput} \ \text{of} \\
& \quad \quad \text{Nothing} \to \text{putStrLn} "\text{Goodbye.}" \\
& \quad \quad \text{Just} \ \text{input} \to (\text{liftIO} \ \$ \ \text{process} \ \text{input}) >> \text{repl}
\end{align*}
\]

\[
\begin{align*}
\text{main} &: \text{IO ()} \\
\text{main} & = \text{runInputT defaultSettings repl}
\end{align*}
\]

Repline

Certain sets of tasks in building command line REPL interfaces are so common that is becomes useful to abstract them out into a library. While haskeline
provides a sensible lower-level API for interfacing with GNU readline, it is some-
what tedious to implement tab completion logic and common command logic
over and over. To that end Repline assists in building interactive shells that
that resemble GHCi’s default behavior.

module Main where

import Control.Monad.Trans
import System.Console.Repline

import Data.List (isPrefixOf)
import System.Process (callCommand)

type Repl a = HaskelineT IO a

-- Evaluation: handle each line user inputs
cmd :: String -> Repl ()
cmd input = liftIO $ print input

-- Tab Completion: return a completion for partial words entered
completer :: Monad m => WordCompleter m
completer n = do
let names = ["kirk", "spock", "mccoy"]
return $ filter (isPrefixOf n) names

-- Commands
help :: [String] -> Repl ()
help args = liftIO $ print $ "Help: " ++ show args

say :: [String] -> Repl ()
say args = do
  _ <- liftIO $ callCommand $ "cowsay" ++ " " ++ (unwords args)
  return ()

options :: [(String, [String] -> Repl ())]
options = [
  ("help", help) -- :help
, ("say", say) -- :say
  ]

ini :: Repl ()
ini = liftIO $ putStrLn "Welcome!"

repl :: IO ()
repl = evalRepl ">>> " cmd options (Word0 completer) ini

332
main :: IO ()
main = repl

Trying it out. (<TAB> indicates a user keypress)

$ runhaskell Simple.hs
# Or if in a sandbox: cabal exec runhaskell Simple.hs
Welcome!

>>> <TAB>
kirk spock mccoy

>>> k<TAB>
kirk

>>> spam
"spam"

>>> :say Hello Haskell

---------
< Hello Haskell >
---------
 / ^__^ \\
(oo)
 \(_)_/\ \
 `--w`

See:
• repline

Template Haskell

This is an advanced section, knowledge of TemplateHaskell is not typically necessary to write Haskell.

Perils of Metaprogramming

Template Haskell is a very powerful set of abstractions, some might say too powerful. It effectively allows us to run arbitrary code at compile-time to generate other Haskell code. You can some absolutely crazy things, like going off and reading from the filesystem or doing network calls that informs how your code compiles leading to non-deterministic builds.

While in some extreme cases TH is useful, some discretion is required when using this in production setting. TemplateHaskell can cause your build times
to grow without bound, force you to manually sort all definitions your modules, and generally produce unmaintainable code. If you find yourself falling back on metaprogramming ask yourself, what in my abstractions has failed me such that my only option is to write code that writes code.

Consideration should be used before enabling TemplateHaskell. Consider an idiomatic solution first.

Quasiquotation

Quasiquotation allows us to express “quoted” blocks of syntax that need not necessarily be the syntax of the host language, but unlike just writing a giant string it is instead parsed into some AST datatype in the host language. Notably values from the host languages can be injected into the custom language via user-definable logic allowing information to flow between the two languages.

In practice quasiquotation can be used to implement custom domain specific languages or integrate with other general languages entirely via code-generation.

We’ve already seen how to write a Parsec parser, now let’s write a quasiquoter for it.

```haskell
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Quasique where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

import Control.Monad.Identity

data Expr
 = Tr
 | Fl
 | Zero
 | Succ Expr
 | Pred Expr
 deriving (Eq, Show)
instance Lift Expr where

 lift Tr = [Tr]
 lift Fl = [Fl]
 lift Zero = [Zero]
 lift (Succ a) = [Succ a]
 lift (Pred a) = [Pred a]

type Op = Ex.Operator String () Identity

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Op a
prefixOp x f = Ex.Prefix (reservedOp x >> return f)

table :: [[Op Expr]]
table = [
 [prefixOp "succ" Succ,
 prefixOp "pred" Pred
]
]

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

factor :: Parser Expr
factor =
 true
false
zero
parens expr

contents : Parser a -> Parser a
contents p = do
 Tok.whiteSpace lexer
 r <- p
eof
 return r

toplevel : Parser [Expr]
toplevel = semiSep expr

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

parseToplevel :: String -> Either ParseError [Expr]
parseToplevel s = parse (contents toplevel) "<stdin>" s

calcExpr :: String -> Q Exp
calcExpr str = do
 filename <- loc_filename `fmap` location
 case parse (contents expr) filename str of
 Left err -> error (show err)
 Right tag -> [] tag []

calc :: QuasiQuoter
calc = QuasiQuoter calcExpr err err
 where err = error "Only defined for values"

Testing it out:
{-# LANGUAGE QuasiQuotes #-}

import Quasiquote

a :: Expr
a = [calc|true|]
 -- Tr

b :: Expr
b = [calc|succ (succ 0)|]
 -- Succ (Succ Zero)

c :: Expr
c = [calc|pred (succ 0)|]
One extremely important feature is the ability to preserve position information so that errors in the embedded language can be traced back to the line of the host syntax.

language-c-quote

Of course since we can provide an arbitrary parser for the quoted expression, one might consider embedding the AST of another language entirely. For example C or CUDA C.

```c
hello :: String -> C.Func
hello msg = [cfun]

int main(int argc, const char *argv[])
{
    printf($msg);
    return 0;
}
```

Evaluating this we get back an AST representation of the quoted C program which we can manipulate or print back out to textual C code using `ppr` function.

Func
```
(DeclSpec [] [] (Tint Nothing))
(Id "main")
DeclRoot
(Params
    [ Param (Just (Id "argc")) (DeclSpec [] [] (Tint Nothing)) DeclRoot
    , Param
        (Just (Id "argv"))
        (DeclSpec [] [ Tconst ] (Tchar Nothing))
        (Array [] NoArraySize (Ptr [] DeclRoot))
    ]
False)
[ BlockStmt
  (Exp
    (Just
      (FnCall
        (Var (Id "printf"))
        [ Const (StringConst [ "Hello Haskell!""] "Hello Haskell!")
        ]))
    , BlockStmt (Return (Just (Const (IntConst "0" Signed 0))))]
```
In this example we just spliced in the anti-quoted Haskell string in the printf statement, but we can pass many other values to and from the quoted expressions including identifiers, numbers, and other quoted expressions which implement the Lift type class.

For example now if we wanted programmatically generate the source for a CUDA kernel to run on a GPU we can switch over the CUDA C dialect to emit the C code.

```haskell
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Text.PrettyPrint.Mainland
import qualified Language.C.Syntax as C
import qualified Language.C.Quote.CUDA as Cuda

cuda_fun :: String -> Int -> Float -> C.Func
cuda_fun fn n a = [Cuda.cfun
  __global__ void $id:fn (float *x, float *y) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if ( i<$n ) { y[i] = $a*x[i] + y[i]; }
  }
]}

cuda_driver :: String -> Int -> C.Func
cuda_driver fn n = [Cuda.cfun
  void driver (float *x, float *y) {
    float *d_x, *d_y;

    cudaMalloc(&d_x, $n*sizeof(float));
    cudaMalloc(&d_y, $n*sizeof(float));

    cudaMemcpy(d_x, x, $n, cudaMemcpyHostToDevice);
    cudaMemcpy(d_y, y, $n, cudaMemcpyHostToDevice);

    $id:fn<<<($n+255)/256, 256>>>(d_x, d_y);

    cudaFree(d_x);
    cudaFree(d_y);
    return 0;
  }
}]
```
makeKernel :: String -> Float -> Int -> [C.Func]
makeKernel fn a n = [
 cuda_fun fn n a ,
 cuda_driver fn n
]

main :: IO ()
main = do
 let ker = makeKernel "saxpy" 2 65536
 mapM_ (print . ppr) ker

Running this we generate:

__global__ void saxpy(float* x, float* y)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < 65536) {
 y[i] = 2.0 * x[i] + y[i];
 }
}

int driver(float* x, float* y)
{
 float* d_x, * d_y;

 cudaMalloc(&d_x, 65536 * sizeof(float));
 cudaMalloc(&d_y, 65536 * sizeof(float));
 cudaMemcpy(d_x, x, 65536, cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, 65536, cudaMemcpyHostToDevice);
 saxpy<<<(65536 + 255) / 256, 256>>>(d_x, d_y);
 return 0;
}

Run the resulting output through nvcc -ptx -c to get the PTX associated with the outputted code.

Template Haskell

Of course the most useful case of quasiquotation is the ability to procedurally generate Haskell code itself from inside of Haskell. The template-haskell framework provides four entry points for the quotation to generate various types of Haskell declarations and expressions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Quasiquoted</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q Exp</td>
<td>[e</td>
<td>...</td>
</tr>
<tr>
<td>Q Pat</td>
<td>[p</td>
<td>...</td>
</tr>
</tbody>
</table>
The logic evaluating, splicing, and introspecting compile-time values is embedded within the Q monad, which has a `runQ` which can be used to evaluate its context. These functions of this monad is deeply embedded in the implementation of GHC.

```haskell
data QuasiQuoter = QuasiQuoter
    { quoteExp :: String -> Q Exp,
    , quotePat :: String -> Q Pat,
    , quoteType :: String -> Q Type,
    , quoteDec :: String -> Q [Dec]
    }
```

Just as before, TemplateHaskell provides the ability to lift Haskell values into their AST quantities within the quoted expression using the Lift type class.

```haskell
class Lift t where
    lift :: t -> Q Exp

instance Lift Integer where
    lift x = return (LitE (IntegerL x))

instance Lift Int where
    lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Char where
    lift x = return (LitE (CharL x))

instance Lift Bool where
    lift True = return (ConE trueName)
    lift False = return (ConE falseName)

instance Lift a => Lift (Maybe a) where
    lift Nothing = return (ConE nothingName)
    lift (Just x) = liftM (ConE justName `AppE` (lift x)) (lift x)

instance Lift a => Lift [a] where
    lift xs = do { xs' <- mapM lift xs; return (ListE xs') }
```

In many cases Template Haskell can be used interactively to explore the AST form of various Haskell syntax.
Using Language.Haskell.TH we can piece together Haskell AST element by element but subject to our own custom logic to generate the code. This can be somewhat painful though as the source-language (called HsSyn) to Haskell is enormous, consisting of around 100 nodes in its AST many of which are dependent on the state of language pragmas.

```haskell
-- builds the function (f = \(a,b) -> a
f :: Q [Dec]
f = do
  let f = mkName "f"
  a <- newName "a"
  b <- newName "b"
  return [ FunD f [ Clause [TupP [VarP a, VarP b]] (NormalB (VarE a)) [] ] ]

my_id :: a -> a
my_id x = $( [ | x | ] )
```

As a debugging tool it is useful to be able to dump the reified information out for a given symbol interactively, to do so there is a simple little hack.

```haskell
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Text.Show.Pretty (ppShow)
import Language.Haskell.TH

introspect :: Name -> Q Exp
introspect n = do
t <- reify n
```
runIO $ putStrLn $ ppShow t
[| return () |]
: $(introspect 'id)
VarI
 GHC.Base.id
 (ForallT
 [PlainTV a_1627405383]
 []
 (AppT (AppT ArrowT (VarT a_1627405383)) (VarT a_1627405383)))
Nothing
(Fixity 9 InfixL)

: $(introspect ''Maybe)
TyConI
 (DataD
 []
 Data.Maybe.Maybe
 [PlainTV a_1627399528]
 [NormalC Data.Maybe.Nothing []
 , NormalC Data.Maybe.Just [(NotStrict , VarT a_1627399528)]
]
 [])
import Language.Haskell.TH
foo :: Int -> Int
foo x = x + 1
data Bar
fooInfo :: InfoQ
fooInfo = reify 'foo
barInfo :: InfoQ
barInfo = reify ''Bar
$([d| data T = T1 | T2 |])

main = print [T1, T2]
Splices are indicated by $(f) syntax for the expression level and at the toplevel
simply by invocation of the template Haskell function. Running GHC with
-ddump-splices shows our code being spliced in at the specific location in the
AST at compile-time.

342
At the point of the splice all variables and types used must be in scope, so it must appear after their declarations in the module. As a result we often have to mentally topologically sort our code when using TemplateHaskell such that declarations are defined in order.

See: Template Haskell AST
Antiquotation

Extending our quasiquotation from above now that we have TemplateHaskell machinery we can implement the same class of logic that it uses to pass Haskell values in and pull Haskell values out via pattern matching on templated expressions.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

module Antiquote where

import Data.Generics
import Language.Haskell.TH
import Language.Haskell.TH.Quote
import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)
import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

data Expr
 = Tr
 | Fl
 | Zero
 | Succ Expr
 | Pred Expr
 | Antiquote String
 deriving (Eq, Show, Data, Typeable)

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

identifier :: Parser String
identifier = Tok.identifier lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

oper s f assoc = Ex.Prefix (reservedOp s >> return f)

table = [oper "succ" Succ Ex.AssocLeft
 , oper "pred" Pred Ex.AssocLeft
]

expr :: Parser Expr
expr = Ex.buildExpressionParser [table] factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

antiquote :: Parser Expr
antiquote = do
 char '$'
 var <- identifier
 return $ Antiquote var

factor :: Parser Expr
factor = true <|> false <|> zero <|> antiquote <|> parens expr

contents :: Parser a -> Parser a
contents p = do
 Tok.whiteSpace lexer
 r <- p
eof
 return r

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

class Expressible a where
express :: a -> Expr
instance Expressible Expr where
 express = id

instance Expressible Bool where
 express True = Tr
 express False = Fl

instance Expressible Integer where
 express 0 = Zero
 express n = Succ (express (n - 1))

exprE :: String -> Q Exp
exprE s = do
 filename <- loc_filename `fmap` location
 case parse (contents expr) filename s of
 Left err -> error (show err)
 Right exp -> dataToExpQ (const Nothing `extQ` antiExpr) exp

exprP :: String -> Q Pat
exprP s = do
 filename <- loc_filename `fmap` location
 case parse (contents expr) filename s of
 Left err -> error (show err)
 Right exp -> dataToPatQ (const Nothing `extQ` antiExprPat) exp

-- antiques RHS
antiExpr :: Expr -> Maybe (Q Exp)
antiExpr (Antiquote v) = Just embed
 where embed = [| express $(varE (mkName v))]
antiExpr _ = Nothing

-- antiques LHS
antiExprPat :: Expr -> Maybe (Q Pat)
antiExprPat (Antiquote v) = Just $ varP (mkName v)
antiExprPat _ = Nothing

mini :: QuasiQuoter
mini = QuasiQuoter exprE exprP undefined undefined

{-# LANGUAGE QuasiQuotes #-}

import Antiquote

-- extract
a :: Expr -> Expr
\[a \text{ succ } x = x \]

\[b :: \text{ Expr } \to \text{ Expr} \]
\[b \text{ succ } x = \text{ pred } x \]

\[c :: \text{ Expressible } a \to a \to \text{ Expr} \]
\[c x = \text{ succ } x \]

\[d :: \text{ Expr} \]
\[d = c \mathbf{ (S : Integer) } \]
\[-- \text{ Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) } \]

\[e :: \text{ Expr} \]
\[e = c \mathbf{ True} \]
\[-- \text{ Succ Tr} \]

Templated Type Families

This is an advanced section, knowledge of TemplateHaskell is not typically necessary to write Haskell.

Just like at the value-level we can construct type-level constructions by piecing together their AST.

<table>
<thead>
<tr>
<th>Type</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t1 \to t2]</td>
<td>ArrowT <code>AppT</code> t2 <code>AppT</code> t2</td>
</tr>
<tr>
<td>[[t]]</td>
<td>ListT <code>AppT</code> t</td>
</tr>
<tr>
<td>[(t1,t2)]</td>
<td>TupleT 2 <code>AppT</code> t1 <code>AppT</code> t2</td>
</tr>
</tbody>
</table>

For example consider that type-level arithmetic is still somewhat incomplete in GHC 7.6, but there often cases where the span of typelevel numbers is not full set of integers but is instead some bounded set of numbers. We can instead define operations with a type-family instead of using an inductive definition (which often requires manual proofs) and simply enumerates the entire domain of arguments to the type-family and maps them to some result computed at compile-time.

For example the modulus operator would be non-trivial to implement at type-level but instead we can use the `enumFamily` function to splice in type-family which simply enumerates all possible pairs of numbers up to a desired depth.

```haskell
module EnumFamily where
import Language.Haskell.TH

enumFamily :: (Integer -> Integer -> Integer) -> Name -> Integer
```
-> Q [Dec]
enumFamily f bop upper = return decls
where
decs = do
 i <- [1..upper]
 j <- [2..upper]
 return $ TySynInstD bop (rhs i j)

rhs i j = TySynEqn
 [LitT (NumTyLit i), LitT (NumTyLit j)]
 (LitT (NumTyLit (i `f` j)))

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}

import EnumFamily
import Data.Proxy
import GHC.TypeLits

type family Mod (m :: Nat) (n :: Nat) :: Nat
type family Add (m :: Nat) (n :: Nat) :: Nat
type family Pow (m :: Nat) (n :: Nat) :: Nat

enumFamily mod 'Mod 10
enumFamily (+) 'Add 10
enumFamily (^) 'Pow 10

a :: Integer
a = natVal (Proxy :: Proxy (Mod 6 4))
 -- 2

b :: Integer
b = natVal (Proxy :: Proxy (Pow 3 (Mod 6 4)))
 -- 9

 -- enumFamily mod 'Mod 3
 -- ======>
 -- template_typelevel_splice.hs:7:1-14
 -- type instance Mod 2 1 = 0
 -- type instance Mod 2 2 = 0
 -- type instance Mod 2 3 = 2
 -- type instance Mod 3 1 = 0
 -- type instance Mod 3 2 = 1
 -- type instance Mod 3 3 = 0
In practice GHC seems fine with enormous type-family declarations although
compile-time may increase a bit as a result.

The singletons library also provides a way to automate this process by letting
us write seemingly value-level declarations inside of a quasiquoter and then
promoting the logic to the type-level. For example if we wanted to write a value-
level and type-level map function for our HList this would normally involve quite
a bit of boilerplate, now it can stated very concisely.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Data.Singletons
import Data.Singletons.TH

$(promote [d])
 map :: (a -> b) -> [a] -> [b]
 map _ [] = []
 map f (x:xs) = f x : map f xs

infixr 5 :::

data HList (ts :: [*]) where
 Nil :: HList '[]
 (:::) :: t -> HList ts -> HList (t ': ts)

 -- TypeLevel
 -- MapJust :: [*] -> [Maybe *]
type MapJust xs = Map Maybe xs

 -- Value Level
 -- mapJust :: [a] -> [Maybe a]
mapJust :: HList xs -> HList (MapJust xs)
mapJust Nil = Nil

349
mapJust (x ::: xs) = (Just x) ::: mapJust xs

type A = [Bool, String, Double, ()]

a ::: HList A
a = True ::: "foo" ::: 3.14 ::: () ::: Nil

data A

example1 ::: HList (MapJust A)
example1 = mapJust a

example2 ::: HList ([Maybe Bool, Maybe String, Maybe Double, Maybe ()])
example2 = Just True ::: Just "foo" ::: Just 3.14 ::: Just () ::: Nil

Templated Type Classes

This is an advanced section, knowledge of TemplateHaskell is not typically necessary to write Haskell.

Probably the most common use of Template Haskell is the automatic generation of type-class instances. Consider if we wanted to write a simple Pretty printing class for a flat data structure that derived the ppr method in terms of the names of the constructors in the AST we could write a simple instance.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Class where

import Language.Haskell.TH

class Pretty a where
 ppr :: a -> String

normalCons :: Con -> Name
normalCons (NormalC n _) = n

getCons :: Info -> [Name]
getCons cons = case cons of
 TyConI (DataD _ _ _ tcons _) -> map normalCons tcons
 _ -> error $ "Can't derive for:" ++ (show cons)

pretty :: Name -> Q [Dec]
pretty dt = do
 info <- reify dt
 Just cls <- lookupTypeName "Pretty"
let datatypeStr = nameBase dt
let cons = getCons info
let dtype = mkName (datatypeStr)
let mkInstance xs =
 InstanceD
 [] -- Context
 (AppT
 (ConT cls)
 -- Instance
 (ConT dtype))
 -- Head
 [(FunD (mkName "ppr") xs)] -- Methods
let methods = map cases cons
return $ [mkInstance methods]

-- Pattern matches on the `ppr` method
cases :: Name -> Clause
cases a = Clause [ConP a []] (NormalB (LitE (StringL (nameBase a))))) []

In a separate file invoke the pretty instance at the toplevel, and with
--ddump-splice if we want to view the spliced class instance.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Class

data PlatonicSolid
 = Tetrahedron
 | Cube
 | Octahedron
 | Dodecahedron
 | Icosahedron

pretty ''PlatonicSolid

main :: IO ()
main = do
 putStrLn (ppr Octahedron)
 putStrLn (ppr Dodecahedron)

Multiline Strings

Haskell no language support for multiline strings literals, although we can em-
ulate this by using a quasiquoter. The resulting String literal is then converted
using toString into whatever result type is desired.

{-# LANGUAGE TemplateHaskell #-}

module Multiline (s) where

import Data.String
import Language.Haskell.TH.Quote

s :: QuasiQuoter
s = QuasiQuoter
 { quoteExp = \a -> [\fromString a] \trim ,
 quotePat = _ -> fail "illegal raw string QuasiQuote",
 quoteType = _ -> fail "illegal raw string QuasiQuote",
 quoteDec = _ -> fail "illegal raw string QuasiQuote"
 }

trim :: String \-> String
trim ('\n':xs) = xs
trim xs = xs

In a separate module we can then enable Quasiquotes and embed the string.

{-# LANGUAGE QuasiQuotes #-}

import Multiline (s)
import qualified Data.Text as T

foo :: T.Text
foo = [s]
This
is
my
multiline
string
[]

git-embed

Often times it is neccessary to embed the specific Git version hash of a build inside the executable. Using git-embed the compiler will effectivelly shell out to the command line to retrieve the version information of the CWD Git repostory and use Template Haskell to define embed this information at compile-time. This is often useful for embedding in --version information in the command line interface to your program or service.
import Git.Embed
import Data.Version
import Paths_myprog

gitRev :: String
gitRev = $(embedGitShortRevision)

gitBranch :: String
gitBranch = $(embedGitBranch)

ver :: String
ver = showVersion Paths_myprog.version
See: git-embed

Categories

This is an advanced section, knowledge of category theory is not typically necessary to write Haskell.

Alas we come to the topic of category theory. Some might say all discussion of Haskell eventually leads here at one point or another.

Nevertheless the overall importance of category theory in the context of Haskell has been somewhat overstated and unfortunately mystified to some extent. The reality is that amount of category theory which is directly applicable to Haskell roughly amounts to a subset of the first chapter of any undergraduate text. And even then, no actual knowledge of category theory is required to use Haskell at all.

Algebraic Relations

Grossly speaking category theory is not terribly important to Haskell programming, and although some libraries derive some inspiration from the subject; most do not. What is more important is a general understanding of equational reasoning and a familiarity with various algebraic relations.

Certain relations show up so frequently we typically refer to their properties by name (often drawn from an equivalent abstract algebra concept). Consider a binary operation \(a \ `op` b \) and a unary operation \(f \).

Associativity
\[a \ `op` (b \ `op` c) = (a \ `op` b) \ `op` c \]

Commutativity
a `op` b = b `op` a

Units
a `op` e = a
e `op` a = a

Inversion
(inv a) `op` a = e
a `op` (inv a) = e

Zeros
a `op` e = e
e `op` a = e

Linearity
f (x `op` y) = f x `op` f y

Idempotency
f (f x) = f x

Distributivity
a `f` (b `g` c) = (a `f` b) `g` (a `f` c)
(b `g` c) `f` a = (b `f` a) `g` (c `f` a)

Anticommutativity
a `op` b = inv (b `op` a)

And of course combinations of these properties over multiple functions gives rise to higher order systems of relations that occur over and over again throughout functional programming, and once we recognize them we can abstract over them. For instance a monoid is a combination of a unit and a single associative operation over a set of values.

Categories

The most basic structure is a category which is an algebraic structure of objects (Obj) and morphisms (Hom) with the structure that morphisms compose associatively and the existence of an identity morphism for each object.

With kind polymorphism enabled we can write down the general category parameterized by a type variable “c” for category, and the instance Hask the category of Haskell types with functions between types as morphisms.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding ((.)), id
-- Morphisms

\[(a \rightarrow b) \circ c = c \circ (a \rightarrow b) \]

class Category (c : : k -> k -> *) where
 id :: (a -> a) c
 (.) :: (y -> z) c -> (x -> y) c -> (x -> z) c

instance Category Hask where
 id x = x
 (f . g) x = f (g x)

Categories are interesting since they exhibit various composition properties and ways in which various elements in the category can be composed and rewritten while preserving several invariants about the program.

Isomorphisms

Two objects of a category are said to be isomorphic if we can construct a morphism with 2-sided inverse that takes the structure of an object to another form and back to itself when inverted.

\[f :: a \rightarrow b \]
\[f' :: b \rightarrow a \]

Such that:

\[f \cdot f' = \text{id} \]
\[f' \cdot f = \text{id} \]

For example the types \(\text{Either} (\) \ a \) and \(\text{Maybe} \ a \) are isomorphic.

{-# LANGUAGE ExplicitForAll #-}

data Iso a b = Iso { to :: a -> b, from :: b -> a }

f :: forall a. Maybe a -> Either (\) a
f (Just a) = Right a
f Nothing = Left ()

f' :: forall a. Either (\) a -> Maybe a
f' (Left _) = Nothing
f' (Right a) = Just a

iso :: Iso (Maybe a) (Either (\) a)
iso = Iso f f'

355
\textbf{Duality}

One of the central ideas is the notion of duality, that reversing some internal structure yields a new structure with a “mirror” set of theorems. The dual of a category reverse the direction of the morphisms forming the category \(C^{Op} \).

\textbf{Functors}

Functors are mappings between the objects and morphisms of categories that preserve identities and composition.

```haskell
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding (Functor, fmap, id)

class (Category c, Category d) => Functor c d t where
  fmap :: c a b -> d (t a) (t b)

  type Hask = (->)

instance Category Hask where
```

```haskell
data \( V \) = V deriving Eq

ex1 = f (f' (Right V)) == Right V
ex2 = f' (f (Just V)) == Just V

data Iso a b = Iso { to :: a -> b, from :: b -> a }

instance Category Iso where
  id = Iso id id
  (Iso f f') . (Iso g g') = Iso (f . g) (g' . f')
```

```haskell
Duality

One of the central ideas is the notion of duality, that reversing some internal structure yields a new structure with a “mirror” set of theorems. The dual of a category reverse the direction of the morphisms forming the category \( C^{Op} \).

\textbf{Functors}

Functors are mappings between the objects and morphisms of categories that preserve identities and composition.

```haskell
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding (Functor, fmap, id)

class (Category c, Category d) => Functor c d t where
 fmap :: c a b -> d (t a) (t b)

 type Hask = (->)

instance Category Hask where
```
\[
\text{id} \, x = x \\
(f \cdot g) \, x = f \, (g \, x)
\]

\textbf{instance} \textbf{Functor} Hask Hask [] where
\[
\text{fmap} \, f \, [] = [] \\
\text{fmap} \, f \, (x:xs) = f \, x : \text{(fmap} \, f \, xs)
\]
\[
\text{fmap} \, \text{id} = \text{id} \\
\text{fmap} \, (a \cdot b) = (\text{fmap} \, a) \cdot (\text{fmap} \, b)
\]

\textbf{Natural Transformations}

Natural transformations are mappings between functors that are invariant under interchange of morphism composition order.

\textbf{type} \textbf{Nat} \, f \, g = \text{forall} \, a. \, f \, a \rightarrow g \, a

Such that for a natural transformation \( h \) we have:

\[
\text{fmap} \, f \cdot h = h \cdot \text{fmap} \, f
\]

The simplest example is between \((f = \text{List})\) and \((g = \text{Maybe})\) types.

\[
\text{headMay} :: \text{forall} \, a. \, [a] \rightarrow \text{Maybe} \, a \\
\text{headMay} \, [] = \text{Nothing} \\
\text{headMay} \, (x:xs) = \text{Just} \, x
\]

Regardless of how we chase \text{safeHead}, we end up with the same result.

\[
\text{fmap} \, f \, (\text{headMay} \, xs) = \text{headMay} \, (\text{fmap} \, f \, xs)
\]

\[
\text{fmap} \, f \, (\text{headMay} \, []) = \text{fmap} \, f \, \text{Nothing} = \text{Nothing}
\]

\[
\text{headMay} \, (\text{fmap} \, f \, []) = \text{headMay} \, [] = \text{Nothing}
\]

\[
\text{fmap} \, f \, (\text{headMay} \, (x:xs)) = \text{fmap} \, f \, (\text{Just} \, x) = \text{Just} \, (f \, x)
\]

\[
\text{headMay} \, (\text{fmap} \, f \, (x:xs)) = \text{headMay} \, [f \, x] = \text{Just} \, (f \, x)
\]

Or consider the \textbf{Functor} \((-\rightarrow)\).

\[
f :: \text{(Functor} \, t) \rightarrow (-\rightarrow) \, a \, b \rightarrow (-\rightarrow) \, (t \, a) \, (t \, b)
\]
A lot of the expressive power of Haskell types comes from the interesting fact that, with a few caveats, polymorphic Haskell functions are natural transformations.

See: You Could Have Defined Natural Transformations

**Yoneda Lemma**

The Yoneda lemma is an elementary, but deep result in Category theory. The Yoneda lemma states that for any functor $F$, the types $F a$ and $b \to F b$ are isomorphic.

{-# LANGUAGE RankNTypes #-}

```haskell
embed :: Functor f => f a -> (forall b. (a -> b) -> f b)
embed x f = fmap f x

unembed :: Functor f => (forall b. (a -> b) -> f b) -> f a
unembed f = f id
```

So that we have:

```
embed . unembed = id
unembed . embed = id
```

The most broad hand-wavy statement of the theorem is that an object in a category can be represented by the set of morphisms into it, and that the information about these morphisms alone sufficiently determines all properties of the object itself.

In terms of Haskell types, given a fixed type $a$ and a functor $f$, if we have some higher order polymorphic function $g$ that when given a function of type $a \to b$ yields $f b$ then the behavior of $g$ is entirely determined by $a \to b$ and the behavior of $g$ can written purely in terms of $f a$.
See:

- Reverse Engineering Machines with the Yoneda Lemma

**Kleisli Category**

Kleisli composition (i.e. Kleisli Fish) is defined to be:

\[
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
\]

\[
f >=> g \ x \to f \ x >>= g
\]

\[
(<<=) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
\]

\[
(<<=) = \text{flip} \ (>=>)
\]

The monad laws stated in terms of the Kleisli category of a monad \( m \) are stated much more symmetrically as one associativity law and two identity laws.

\[
(f >=> g) >=> h = f >=> (g >=> h)
\]

\[
\text{return} >=> f = f
\]

\[
f >=> \text{return} = f
\]

Stated simply that the monad laws above are just the category laws in the Kleisli category.

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ExplicitForAll #-}

import Control.Monad
import Control.Category
import Prelude hiding ((.))

-- Kleisli category
newtype Kleisli m a b = K (a -> m b)

-- Kleisli morphisms ( a -> m b )
type (a :-> b) m = Kleisli m a b

instance Monad m => Category (Kleisli m) where
  id = K return
  (K f) . (K g) = K (f <=< g)

just :: (a :-> a) Maybe
just = K Just

left :: forall a b. (a :-> b) Maybe -> (a :-> b) Maybe
left f = just . f
\textbf{right} :: \( \forall \ a \ b. \ (a \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow b) \)
right \( f = f . \ just \)

For example, \texttt{Just} is just an identity morphism in the Kleisli category of the \texttt{Maybe} monad.

\texttt{Just >>= f f f >>= Just f}

\section*{Resources}

- Category Theory, Awodey
- Category Theory Foundations
- The Catsters

\section*{Other Languages}

Let us attempt to give an objective comparison of Haskell to other languages with regards to which language principles they share and how they differ. This is not advisement to use or not use any of these languages simply a statement of the similarities and differences between them at the language level.

No notion of “weak” or “strong” typing will be discussed because the terms have no universal meaning.

No notion of “object-oriented” or “functional” paradigms will be discussed because the terms have no universal meaning.

\section*{Haskell}

Haskell’s main implementation is \texttt{ghc}.

Haskell is a \textit{general purpose language}.

Haskell is \textit{garbage collected}.

Haskell is \textit{compiled} through a custom native code generator.

Haskell is \textit{statically} typed.

Haskell allows polymorphism by means of \textit{parametric polymorphism} and \textit{ad-hoc polymorphism} through typeclasses.

Haskell is \textit{pure} and statically tracks effects.
OCaml

OCaml originally known as Objective Caml, is the main implementation of the Caml programming language. The type system of OCaml is significantly less advanced than modern GHC Haskell and does not supported higher-kind typed or type-level programming to the extent that has become prevalent in portions of recent Haskell. The OCaml compiler is also significantly less advanced than modern GHC runtime and largely does not perform any compiler optimizations or program transformations. The language itself does has several advantages over Haskell in that is has a module system Although it is possible to write pure OCaml there is no language-integrated support and the current engineering practice around the language encourages ubiquitous impurity in third party libraries.

**Main difference:** Both have fairly modern type type systems, but OCaml does not enforce purity and uses call-by-value.

Ocaml’s main implementation is ocamle.

OCaml is a general purpose language.

OCaml is a statically typed language.

OCaml is garbage collected.

OCaml allows polymorphism by means of parametric polymorphism and ad-hoc polymorphism through modular implicits.

OCaml has a module system and functors.

OCaml is not an optimizing compiler.

Ocaml is impure by default and does not statically track effects.

Standard ML

Standard ML was a general-purpose, modular, functional programming language with compile-time type checking and type inference.

Standard ML was traditionally a general purpose language, although it’s lack of a modern compiler largely only makes it useful for work on pure type theory and proof assistants and not in industrial settings. Standard ML has been largely abandoned in recent years and is a good example of a promising language that withered on the vine from a lack of engineering effort devoted toward the backend compiler.

**Main difference:** Standard ML is no longer actively developed, Haskell is.

Standard ML’s main implementation is smlnj. Other implementations existed in milton and polyml.

Standard ML has no package manager.
Standard ML allows polymorphism by means of *parametric polymorphism*. Standard ML has a module system and functors. Standard ML is a *statically typed* language. Standard ML is *impure* by default and does not statically track effects. Standard ML implementations are typically *garbage collected*.

**Agda**

**Main difference**: Agda is not a general purpose language, Haskell is.

Agda’s main implementation is *agda*.

Agda is not a general purpose language, it is largely used as a proof environment.

Agda has no package manager.

Agda is a *statically typed* language.

**Coq**

Coq is an interactive theorem prover based on the calculus of inductive constructions. It compiles into a Core language called Gallina whose defining feature is that it is weakly normalizing (i.e. all programs terminate). Although Coq allows limited extraction of some programs to other languages, it is not by itself a programming language in the traditional sense, most Coq programs are not run or compiled.

**Main difference**: Coq is not a general purpose language, Haskell is.

Coq’s main implementation is *coq*.

Coq is *not a general purpose language*, it is largely used as a proof environment.

Coq is a *statically typed* language.

**Idris**

Idris is a general-purpose purely functional programming language with dependent types.

**Main difference**: Idris has dependent types and call-by-value semantics, Haskell does not have dependent types and uses call-by-need.

Idris’s main implementation is *idris*.

Idris is a *general purpose language*.

Idris allows polymorphism by means of *parametric polymorphism* and *ad-hoc polymorphism*.
Idris is a *statically typed* language.

Idris is *garbage collected* by default, although there is some novel work on uniqueness types which can statically guarantee aliasing properties of references.

Idris is *pure* and statically tracks effects.

**Rust**

Rust is a general-purpose, multi-paradigm, compiled programming language developed by Mozilla Research. It incorporates many of the foundational ideas of Haskell’s type system but uses a more traditional imperative evaluation model. Rust includes type inference, ad-hoc polymorphism, sum types, and option chaining as safe exception handling. Notably Rust lacks higher-kindred types which does not allow many modern functional abstractions to be encoded in the language. Rust does not enforce purity or track effects, but has a system for statically analyzing lifetimes of references informing the efficient compilation of many language constructs to occur without heap allocation.

**Main difference:** Rust is a modern imperative typed language, Haskell is a modern functional typed language with recent type system. Rust does not have the capacity to distinguish between pure and impure functions at the language level.

Rust’s main implementation is *rustc*.

Rust is a *statically typed* language.

Rust is a *general purpose language*.

Rust allows polymorphism by means of *parametric polymorphism* and *ad-hoc polymorphism*.

Rust is *not garbage collected* by default, instead uses static semantics to the analyze lifetimes. Optionally supports garbage collection.

Rust is *impure* by default and does not statically track effects. It does however have static tracking of memory allocations and lifetimes.

**Purescript**

Purescript is a Haskell-like language that compiles into Javascript for evaluation within a web browser. Semantically it is very close to Haskell except that it uses a call-by-value model instead of Haskell’s call-by-need. The type system is a superset of Haskell 2010 and includes ad-hoc polymorphism, parametric polymorphism, rank-n polymorphism, row-polymorphism, higher-kindred types and full algebraic data types.

**Main difference:** Purescript targets Javascript in the browser, while GHC Haskell is designed to work on top of the GHC managed runtime.
Purescript’s main implementation is *purescript*.
Purescript is a *statically typed* language.
Purescript is *pure* and statically tracks effects using an extensible record system embedded in the Eff monad.

**Elm**

Elm is a ML-like language that compiles into Javascript for evaluation within a web browser.

**Main difference:** Elm targets Javascript in the browser, while GHC Haskell is designed to work on top of the GHC managed runtime. Elm lacks any semblance of a modern ML type system features, and has no coherent story for overloading, modules or higher polymorphism.

Elm’s main implementation is *elm*.
Elm is a *statically typed* language.
Elm allows polymorphism by means of *parametric polymorphism*.
Elm is *pure* and statically tracks effects.

**Python**

Python is a widely used general-purpose, high-level programming language. It is based on object-style of programming constructions and allows first class functions and higher order functions. Python is untyped and is notable for its simplistic runtime and global mutex preventing concurrency.

**Main difference:** Python is untyped and imperative, Haskell is statically typed.

Python’s main implementation is *cpython*.
Python is a *untyped* language.
Python is *impure* by default and does not statically track effects.
Python internally refers to runtime value tags as *types*, which differs from the Haskell notion of types.
Python allows polymorphism by means of un typing, all functions can take any type.

**R**

R’s main implementation is *r*.
R is a *untyped* language.
R allows polymorphism by means of *unityping*.

R internally refers to runtime value tags as *types*, which differs from the Haskell notion of types.

R is *interpreted*.

**Julia**

Julia is a high-level dynamic programming language designed to address the requirements of high-performance numerical and scientific computing.

**Main difference**: Julia is untyped and imperative, Haskell is statically typed.

Julia’s main implementation is *julia*.

Julia is a *untyped* language.

Julia allows polymorphism by means of *unityping*.

Julia internally refers to runtime value tags as *types*, which differs from the Haskell notion of types.

Julia is *compiled* through the LLVM framework.

**Erlang**

Erlang’s main implementation is *erl*.

Erlang is a *untyped* language.

Erlang is interpreted.

Erlang allows polymorphism by means of *unityping*.

Erlang internally refers to runtime value tags as *types*, which differs from the Haskell notion of types.

Erlang is *impure* by default and does not statically track effects.

**Clojure**

Clojure is a modern LISP dialect that emphasizes immutability. It does not enforce safety and idiomatic clojure often includes mutable references and destructive updates. There are some efforts toward an optional typing system provided by the core.typed.

**Main difference**: Clojure is a untyped typed Lisp dialect, while Haskell is in the ML family.

Clojure’s main implementation is *clojure*.

Clojure is a *untyped* language.
Clojure allows polymorphism by means of *untyping*.

Clojure internally refers to runtime value tags as *types*, which differs from the Haskell notion of types.

Clojure is *compiled* to Java Virtual Machine bytecode.

**Swift**

Swift is a multi-paradigm language created for iOS and OS X development by Apple. Swift incorporates recent developments in language design and uncommonly includes return type polymorphism, type inference, ad-hoc polymorphism, sum types, and option chaining as safe exception handling. Swift does not enforce purity or track effects, and allows mutable and destructive updates.

**Main difference:** Swift is reasonably modern imperative typed language, Haskell is a modern functional typed language.

Swift’s main implementation is *swiftc*.

Swift allows polymorphism by means of *parametric polymorphism* and *ad-hoc polymorphism*.

Swift is a *statically typed* language.

Swift is *compiled* through the LLVM framework.

Swift *does not* have an effect system.

**C#**

**C++**

**Go**

Go is a programming language developed at Google. Although Go is statically typed it has failed to integrate most modern advances in programming language work since the 1970s and instead chooses a seemingly regressive design. Most notably it lacks any notion of generics and polymorphism is either achieved by manual code duplication or unsafe coercions.

**Main difference:** Go is a language designed around the idea that language design has not advanced since 1970, while Haskell incorporates many ideas from modern research.

Go’s main implementation is *go*.

Go is a *statically typed* language.

Go has *no safe polymorphism*. 

366
Go is statically compiled with a custom toolchain.  
Go does not have an effect system.

Scala

Javascript

JavaScript is a high-level, dynamic, untyped, and interpreted programming language that was ubiquitous in web development during the 90s and 00s. Javascript is most kindly described as a language that “just happened” and an enduring testament to human capacity to route around problems.

**Main difference:** Like many web technologies Javascript “just happened” and it’s design was dominated by economic factors. Haskell was designed with some insight into the end result.

Javascripts implementations include *NodeJS, V8* and *spidermonkey.*

Javascript is a *untyped* language.

Javascript is *interpreted,* tracing JIT specialization is common.

Javascript allows polymorphism by means of *untyping.*

Javascript internally refers to runtime value tags as *types,* which differs from the Haskell notion of types.

The majority of Javascript implementations are garbage collected.

Code

- 01-basics/
- 02-monads/
- 03-monad-transformers/
- 04-extensions/
- 05-laziness/
- 06-prelude/
- 07-text-bytestring/
- 08-applicatives/
- 09-errors/
- 10-advanced-monads/
- 11-quantification/
- 12-gadts/
- 13-lambda-calculus/
- 14-interpreters/
- 15-testing/
- 16-type-families/
- 17-promotion/
- 18-generics/
- 19-numbers/
- 20-data-structures/
- 21-fi/
- 22-concurrency/
- 23-graphics/
- 24-parsing/
- 25-streaming/
- 26-data-formats/
- 27-web/
- 28-databases/
- 29-ghc/
- 30-languages/
- 31-template-haskell/
- 33-categories/